Skip to main content
Log in

Numerical analysis on heat transfer performance of industrial double-tube heat exchanger using CNT: Newtonian/non-Newtonian hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer characteristics and energy consumption analysis of industrial double-tube heat exchanging system are analysed numerically by employing CNT—Newtonian/non-Newtonian hybrid nanofluids as coolants. The base fluid used for Newtonian system is water and for non-Newtonian system is sodium alginate (SA). The considered Newtonian and non-Newtonian hybrid nanofluids are: CNT-Cu/water, CNT-Al2O3/water, CNT-Cu/SA, and CNT-Al2O3/SA. The range of total volume fraction of nanoparticles is from 5 to 20 vol%. The choice of nanoparticles in this study is reliable for industrial deployment. The mixture model approach is adopted to solve the governing equations with control volume strategy combined with a second-order upwind scheme. Assumptions and boundary conditions are reliable to the real-time industry deployment. The current numerical procedure is in accordance with the earlier reported experimental study. Effectiveness, pumping power, and pressure drop of the whole heat exchanger are investigated and reported in this work. With Newtonian hybrid nanofluid, the heat transfer rate of double-tube heat exchanger is increased to ~ 30%. Overall heat transfer coefficient of the heat exchanger is improved by 25% with the usage of Newtonian hybrid nanofluid. The performance index of heat exchanger is increased to about 67% with Newtonian hybrid nanofluid (in the turbulent region). In the overall analysis presented here, Newtonian base fluid with CNT and Cu nanoparticles shows effective heat transfer performance. Finally, the limitations of respective nanoparticles and fluids are explained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Area of heat exchanger, m2

\({C}_{\mathrm{p}}\) :

Specific heat, J kg1 K1

CNTs:

Carbon nanotubes

\(D\) :

Tube diameter, mm

DTHE:

Double-tube heat exchanger

\(f\) :

Friction factor

\(g\) :

Gravity force, m s2

HTP:

Heat transfer performance

\(h\) :

Heat transfer coefficient, W m2 K1

\(K\) :

Thermal conductivity, W m1 K1

\(L\) :

Length, mm

\(\dot{m}\) :

Mass flow rate, kg s1

\(n\) :

Shape factor,-

NTU:

Number of transfer units

\(\mathrm{Nu}\) :

Nusselt number, -

PP:

Pumping power, W

q:

Heat transfer rate, W

\(\dot{Q}\) :

Heat convection rate,

\(q^{\prime\prime}\) :

Heat flux, W m2

\(\mathrm{Ra}\) :

Rayleigh number, -

\(\mathrm{Re}\) :

Reynolds number, -

SA:

Sodium alginate

\(T\) :

Temperature, °C (or) K

\(u,v,w\) :

Velocity components, m s1

\(VG\) :

Viscosity grade,-

\(p\) :

Pressure drop, Pa

\(T\) :

Temperature difference, K

U :

Overall heat transfer coefficient, W m2 K1

\(\dot{V}\) :

Volumetric flow rate, m3 s1

\({W}_{{\rm pump}}\) :

Pumping power, W

3D:

Three-dimensional

\(bf\) :

Base fluid

\(c\) :

Cold

\(c,i\) :

Cold inlet

\(c,o\) :

Cold outlet

eff:

Effective

\(f\) :

Fluid

\(hnf\) :

Hybrid nanofluid

\(h\) :

Hot

\(h,i\) :

Hot inlet

\(h,o\) :

Hot outlet

m :

Mixture model in Eqs. (1)–(4)

\(max\) :

Maximum

\(min\) :

Minimum

\(nf\) :

Nanofluid

\(s\) :

Nanoparticle (solid particle)

\(w\) :

Wall

\(\rho\) :

Density, kg m3

\(\gamma\) :

Kinematic viscosity, m2 s1

\(\beta\) :

Thermal expansion coefficient, K1

\(\overrightarrow{v}\) :

Velocity vector

\(\alpha\) :

Thermal diffusivity, m2 s1

\(\varphi\) :

Volume fraction, %

\(\mu\) :

Viscosity, kg m1 s1

\(\varepsilon\) :

Effectiveness –

\(\eta\) :

Performance index

\(\tau\) :

Shear rate

\(\dot{\gamma }\) :

Shear stress

\(\rho\) :

Density

References

  1. Hartnett JP, Kostic M. Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts. Adv Heat Transf. 1989;19(C):247–356.

    Article  CAS  Google Scholar 

  2. Singh V, Haridas D, Srivastava A. Experimental study of heat transfer performance of compact wavy channel with nanofluids as the coolant medium: Real time non-intrusive measurements. Int J Therm Sci. 2019;145(July):105993. https://doi.org/10.1016/j.ijthermalsci.2019.105993.

    Article  CAS  Google Scholar 

  3. Chen Z, Zheng D, Wang J, Chen L, Sundén B. Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater. Renew Energy. 2019;147(1):1011–8

  4. Ghasemi SE, Ranjbar AA. Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. Int J Hydrog Energy. 2017;42(34):21626–34. https://doi.org/10.1016/j.ijhydene.2017.07.087.

    Article  CAS  Google Scholar 

  5. Islam R, Shabani B, Andrews J, Rosengarten G. Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell. Int J Hydrog Energy. 2017;42(30):19272–86. https://doi.org/10.1016/j.ijhydene.2017.06.087.

    Article  CAS  Google Scholar 

  6. Ahmad L, Khan M. Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluids over a porous moving curved surface. Int J Hydrog Energy. 2019;44(21):10197–206. https://doi.org/10.1016/j.ijhydene.2019.02.162.

    Article  CAS  Google Scholar 

  7. Huminic G, Huminic A. The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. Int J Heat Mass Transf. 2018;119:813–27.

    Article  CAS  Google Scholar 

  8. Saba F, Ahmed N, Khan U, Mohyud-Din ST. A novel coupling of (CNT-Fe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls. Int J Heat Mass Transf. 2019;136:186–95. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.097.

    Article  CAS  Google Scholar 

  9. Waini I, Ishak A, Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int J Heat Mass Transf. 2019;136:288–97. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101.

    Article  CAS  Google Scholar 

  10. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transf. 2018;91:262–73. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.020.

    Article  CAS  Google Scholar 

  11. Dalkılıç AS, Türk OA, Mercan H, Nakkaew S, Wongwises S. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts. Int Commun Heat Mass Transf. 2019;107(June):1–13.

    Article  Google Scholar 

  12. Sun B, Zhang Y, Yang D, Li H. Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl Therm Eng. 2019;151(December 2018):556–66. https://doi.org/10.1016/j.applthermaleng.2019.01.111.

    Article  CAS  Google Scholar 

  13. Hussien AA, Abdullah MZ, Yusop NM, Al-Nimr MA, Atieh MA, Mehrali M. Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. Int J Heat Mass Transf. 2017;115:1121–31. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.120.

    Article  CAS  Google Scholar 

  14. Roy G, Gherasim I, Nadeau F, Poitras G, Nguyen CT. Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. Int J Therm Sci. 2012;58:120–9.

    Article  CAS  Google Scholar 

  15. Safikhani H, Abbassi A. A new dispersion model for thermal properties of nanofluids in flat tubes. Int J Therm Sci. 2016;109:114–22.

    Article  CAS  Google Scholar 

  16. Qi C, Yang L, Chen T, Rao Z. Experimental study on thermo-hydraulic performances of TiO2-H2O nanofluids in a horizontal elliptical tube. Appl Therm Eng. 2018;129:1315–24. https://doi.org/10.1016/j.applthermaleng.2017.10.137.

    Article  CAS  Google Scholar 

  17. Ho CJ, Chang CY, Yan WM, Amani P. A combined numerical and experimental study on the forced convection of Al2O3-water nanofluid in a circular tube. Int J Heat Mass Transf. 2018;120:66–75.

    Article  CAS  Google Scholar 

  18. Soheil S, Ajarostaghi M, Zaboli M, Nourbakhsh M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10205-z.

    Article  Google Scholar 

  19. Mosayeb gholinia, Hossein Javadi, Ali Gatabi, Amirhossein khodabakhshi, Davood domiri ganji. Analytical study of a two-phase revolving system of nanofluid flow in the presence of a magnetic field to improve heat transfer. Sigma J Eng & Nat Sci. 2019;37 (2): 341–60.

  20. Javadi H, Soheil S, Ajarostaghi M, Pourfallah M, Zaboli M. Performance analysis of helical ground heat exchangers with di ff erent con fi gurations. Appl Therm Eng. 2019;154(November 2018):24–36.

    Article  Google Scholar 

  21. Javadi H, Soheil S, Ajarostaghi M, Sina S, Pourfallah M. Geothermics Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics. 2019;81(March):53–73. https://doi.org/10.1016/j.geothermics.2019.04.005.

    Article  Google Scholar 

  22. Javadi H, Urchueguia JF, Soheil S, Ajarostaghi M, Borja Badenes. Numerical study on the themal performance of a Single U-tube borehole heat exchanger using nano-enhanced phase change materials. Energies. 2020;13:1–20.

  23. Akbarzadeh F, Seyed H, Mousavi S, Seyed A, Hosseini A. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent – divergent tube. J Therm Anal Calorim. 2019;140:1483–505.

  24. Noorbakhsh M, Zaboli M, Soheil S, Ajarostaghi M. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J. Therm. Anal. Calorim. 2019;140:1341–53.

  25. Soheil S, Ajarostaghi M, Shirzad M, Rashidi S, Li LKB. Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts. Energy Sources Part A Recover Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1841860.

    Article  Google Scholar 

  26. Hossein S, Karouei H, Soheil S, Ajarostaghi M, Gorji M. Seyed Reza Hosseini Fard. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double—pipe heat exchanger equipped with an innovative curved conical turbulator. J Therm Anal Calorim. 2020;143: 1455–66.

  27. Soheil S, Ajarostaghi M, Zaboli M, Nourbakhsh M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. J Therm Anal Calorim. 2021;143:1583–97.

  28. Shirzad M, Soheil S, Ajarostaghi M, Aghajani M, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30(7):1356–65. https://doi.org/10.1016/j.apt.2019.04.011.

    Article  CAS  Google Scholar 

  29. Olfian H, Soheil S, Ajarostaghi M, Ebrahimnataj M. Development on evacuated tube solar collectors: a review of the last decade results of using nanofluids. Sol Energy. 2020;211(July):265–82. https://doi.org/10.1016/j.solener.2020.09.056.

    Article  CAS  Google Scholar 

  30. Yang L, Du K, Zhang Z. Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG-water nanofluids. Int J Mech Sci. 2020;168(September 2019):105310.

  31. Naik BAK, Vinod AV. Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Therm Fluid Sci. 2018;90(September 2017):132–42. https://doi.org/10.1016/j.expthermflusci.2017.09.013.

    Article  CAS  Google Scholar 

  32. Jayachandra Babu M, Sandeep N. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alexandria Eng J. 2016;55(3):2193–201. https://doi.org/10.1016/j.aej.2016.06.009.

    Article  Google Scholar 

  33. Li SN, Zhang HN, Bin LX, Li Q, Li FC, Qian S, et al. Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink. Appl Therm Eng. 2017;115:1213–25. https://doi.org/10.1016/j.applthermaleng.2016.10.047.

    Article  CAS  Google Scholar 

  34. Rajaee F, Amin M, Rad V, Kasaeian A, Mahian O. Experimental analysis of a photovoltaic / thermoelectric generator using cobalt oxide nano fl uid and phase change material heat sink. Energy Convers Manag. 2020;212(February):112780.

    Article  CAS  Google Scholar 

  35. Yousefzadeh S, Rajabi H, Ghajari N, Mohsen M, Omid S, Akbari A. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J Therm Anal Calorim. 2019;(0123456789).

  36. Sarlak A, Ahmadpour A, Hajmohammadi MR. Thermal design improvement of a double-layered microchannel heat sink by using multi-walled carbon nanotube (MWCNT) nanofluids with non-Newtonian viscosity. Appl Therm Eng. 2019;147(September 2018):205–15. https://doi.org/10.1016/j.applthermaleng.2018.10.084.

    Article  CAS  Google Scholar 

  37. Davari H, Reza H, Hakan G, Issa FÖ. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using—Fe3O4 nanofluid. J Therm Anal Calorim. 2020; 140:2605–14.

  38. Mohsen M, Javad P. Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder. J Therm Anal Calorim. 2019;140:2733–47.

  39. Huminic G, Huminic A. A numerical approach on hybrid nanofluid behavior in laminar duct flow with various cross sections. J Therm Anal Calorim. 2019;140:2097–110.

  40. Wongcharee PSK, Eiamsa VCS. Silver—water nanofluid flow and convective heat transfer in a microfin tube equipped with loose—fit twisted tapes. J Therm Anal Calorim. 2020;140:2541–54.

  41. Amini y, Akhavan S. Izadpanah YASAE. Vortex—induced vibration of a cylinder in pulsating nanofluid flow. J Therm Anal Calorim. 2020;140(5):2143–58.

  42. Azadi M, Hosseinirad E, Hormozi F, Rashidi S. Second law analysis for nanofluid flow in mini—channel heat sink with finned surface: a study on fin geometries. J Therm Anal Calorim. 2019;140:1883–95.

  43. Ramalingam D, Esakkimuthu R, Sundaram G, Jawahar P, Monte M. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design Linear Fresnel reflector. J Therm Anal Calorim. 2019;140:33–51.

    Google Scholar 

  44. Khoshvaght MRM, Abbasian AAA, Mazloumi ASH. Enhanced heat transfer in pin fin heat sink working with nitrogen gas—water two—phase flow : variable pin length and longitudinal pitch. J Therm Anal Calorim. 2020;140:2875–901.

  45. Ahangar S, Rahmatollah Z, Habibollah K, Habib S. Experimental study of the subcooled flow boiling heat transfer of magnetic nanofluid in a vertical tube under magnetic field. J Therm Anal Calorim. 2020;140:2805–16.

  46. Giwa SO, Sharifpur M, Meyer JP, Wongwises S, Mahian O, Silver A. Experimental measurement of viscosity and electrical conductivity of water—based γ—Al2O3/MWCNT hybrid nanofluids with various particle mass ratios. J Therm Anal Calorim. 2020;(0123456789).

  47. Soontarapiromsook J, Godson L, Selim A. investigation on two-phase heat transfer of R-134a during vaporization in a plate heat exchanger with rough surface. Int J Heat Mass Transf Exp. 2020;160:35–8.

    Google Scholar 

  48. Hemmat M, Masoud E. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2020;140:1633–54.

  49. U.Nazir, S.Saleem, M. Nawaz, A.A Alderremy. Three—dimensional heat transfer in nonlinear flow: a FEM computational approach. J Therm Anal Calorim. 2020;140:2519–28.

  50. Pourpasha H, Zeinali S, Mahian O, Wongwises S. The effect of multi-wall carbon nanotubes / turbine meter oil nano fl uid concentration on the thermophysical properties of lubricants. Powder Technol. 2020;367:133–42.

    Article  CAS  Google Scholar 

  51. Adıgüzel ÖB, Atalık K. Magnetic field effects on Newtonian and non-Newtonian ferrofluid flow past a circular cylinder. Appl Math Model. 2017;42:161–74.

    Article  Google Scholar 

  52. Shojaeian M, Koşar A. Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Int J Heat Mass Transf. 2014;70:664–73.

    Article  Google Scholar 

  53. Pawar SS, Sunnapwar VK. Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow. Exp Therm Fluid Sci. 2013;44:792–804.

    Article  CAS  Google Scholar 

  54. Pimenta TA, Campos JBLM. Heat transfer coefficients from Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil. Int J Heat Mass Transf. 2013;58(1–2):676–90.

    Article  CAS  Google Scholar 

  55. Krishnakumar TS, Sheeba A, Mahesh V, Jose PM. Heat transfer studies on ethylene glycol/water nanofluid containing TiO2 nanoparticles. Int J Refrig. 2019;102:55–61. https://doi.org/10.1016/j.ijrefrig.2019.02.035.

    Article  CAS  Google Scholar 

  56. Mohammadpoor M, Sabbaghi S, Zerafat MM, Manafi Z. Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes. Int J Refrig. 2019;99:243–50.

    Article  CAS  Google Scholar 

  57. Bayareh M, Nasr EM, Afshar N, Bastegani M. Numerical study of slug flow heat transfer in microchannels. Int J Therm Sci. 2020;147(October 2019):106118. https://doi.org/10.1016/j.ijthermalsci.2019.106118.

    Article  CAS  Google Scholar 

  58. Sadri R, Mallah AR, Hosseini M, Ahmadi G, Kazi SN, Dabbagh A, et al. CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data. J Mol Liq. 2017;2018(269):152–9. https://doi.org/10.1016/j.molliq.2018.06.011.

    Article  CAS  Google Scholar 

  59. Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liq. 2018;266:797–805. https://doi.org/10.1016/j.molliq.2018.07.009.

    Article  CAS  Google Scholar 

  60. Anitha S, Thomas T, Parthiban V, Pichumani M. Modelling of Newtonian and non-Newtonian based coolants for deployment in industrial length-scale shell and tube heat exchanger. Int J Mod Phys C. 2020. https://doi.org/10.1142/S0129183121500856.

    Article  Google Scholar 

  61. Olatundun AT, Makinde OD. Analysis of blasius flow of hybrid nanofluids over a convectively heated surface. Defect Diffus Forum. 2017;41:29–41.

    Article  Google Scholar 

  62. Rosdzimin M, Rahman A, Yuen K, Azam L, Idris C, Rashdan M, et al. Numerical analysis of the forced convective heat transfer on Al2O3–Cu/water hybrid nanofluid. Heat Mass Transf. 2016.

  63. LianDuan JH, Cao L, Huo C. Experimental study on heat transfer characteristics of CNTs/Al2O3 nanofluids in personal cooling system based on thermoelectric refrigeration. Procedia Eng. 2017;205:588–95.

    Article  Google Scholar 

  64. Versteeg HK, Malalasekara W. An interdiction to computational fluid dynamics. The finite volume method. London: Longman Group Ltd.; 1995.

    Google Scholar 

  65. Anitha S, Loganthan K, Pichumani M. Approaches for modelling of industrail energy systems: correlation of heat transfer characteristics between magnetohydrodynamics hybrid nanofluids and performance analysis of industrial length-scale heat exchanger. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10072-8.

    Article  Google Scholar 

  66. Aghabozorg MH, Rashidi A, Mohammadi S. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Therm Fluid Sci. 2016;72:182–9.

    Article  CAS  Google Scholar 

  67. Zhaoqin Y, Fubin B, Chengxu T, Yicong H, Rui T. Numerical and experimental studies of heat and flow characteristics in a laminar pipe flow of nanofluid. J Exp Nanosci. 2017;13:82–94.

    Google Scholar 

  68. Anitha S, Thomas T, Parthiban V, Pichumani M. What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Adv Powder Technol. 2019;30(12):3107–17.

    Article  CAS  Google Scholar 

  69. Naterer GF. Heat transfer in single and multiphase systems. Boca Raton: CRC Press; 2003.

    Google Scholar 

  70. Cengel YA. Heat transfer, A practical approach. New York: Tata Mcgraw hill publication; 2004.

    Google Scholar 

  71. Jeffrey Brinker C, Scherer GW. Sol-Gel science, the physics and chemistry of sol–gel processing: film formation. Cambridge: Academic Press; 1990. p. 786–837.

    Book  Google Scholar 

  72. Bahiraei M, Salmi HK, Safaei MR. Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Convers Manag. 2019;180:72–82.

    Article  CAS  Google Scholar 

  73. Rawa MJH, Abu-hamdeh NH, Golmohammadzadeh A, Shahsavar A. An investigation on effects of blade angle and magnetic field on flow and heat transfer of non-Newtonian nanofluids: a numerical simulation. Int Commun Heat Mass Transf. 2021;120:105074.

    Article  CAS  Google Scholar 

  74. Aboud ED, Rashid HK, Jassim HM, Ahmed SY, Obaid S, Khafaji W, et al. Heliyon MHD effect on mixed convection of annulus circular enclosure filled with Non-Newtonian nano fluid. Heliyon. 2020;6:e03773.

    Article  Google Scholar 

  75. Hussanan A, Qasim M, Chen Z. Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Phys A. 2020;550:123957.

    Article  CAS  Google Scholar 

  76. Naser H-M, Shekari Y, Tayebi A. Three-dimensional analysis of forced convection of Newtonian and non-Newtonian nanofluids through a horizontal pipe using single- and two-phase models. Int Commun Heat Mass Transf. 2021;121:105119.

    Article  Google Scholar 

  77. Sinz CK, Woei HE, Khalis MN, Ali Abbas SI. Numerical study on Turbulent Force convective heat transfer of hybrid nanofluid, Ag/HEG in a Circular channel with constant heat flux. J Adv Res Fluid Mech Therm Sci. 2016;24:1–11.

    Google Scholar 

Download references

Acknowledgements

Authors SA and MP express sincere gratitude to SNR Sons Charitable Trust, Coimbatore, India, and Sri Ramakrishna Engineering College, Coimbatore, India. This research work is supported by DST-WOS (A) the project no. SR/WOSA/PM-86/2017 and DST INSPIRE project 04/2013/000209. We sincerely thank Universal Heat Exchangers, Coimbatore, India, to provide the data of heat exchanger (www.uniheat.com).

Author information

Authors and Affiliations

Authors

Contributions

Anitha S was involved in conceptualization, software, validation, investigation, and writing—original draft. M. Pichumani contributed to writing—review & editing and supervision.

Corresponding author

Correspondence to M. Pichumani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, S., Pichumani, M. Numerical analysis on heat transfer performance of industrial double-tube heat exchanger using CNT: Newtonian/non-Newtonian hybrid nanofluids. J Therm Anal Calorim 147, 9603–9624 (2022). https://doi.org/10.1007/s10973-022-11249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11249-z

Keywords

Navigation