Skip to main content
Log in

Extraction and characterization of residue fibers from defatted date-pits after alkaline-acid digestion: effects of different pretreatments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Holo-cellulose fibers were prepared by pre-treatments (i.e., water, ethanol, microwave and pressure cooker) followed by alkaline-acid digestion of defatted date-pits. Ethanol pre-treated fibers showed the highest content of hollo-cellulose (i.e., 76.1 g 100 g−1 sample−1) and the lowest content of lignin (0.8 g 100 g−1 sample−1). Low lignin content in lignocellulosic fibers is required when it is used for biofuel production and food products. Thermal analysis of defatted date-pits showed a structural relaxation at 267.7 K followed by an onset glass transition at 403 K and solids melting-decomposition endothermic peak at 456 K with enthalpy of 125 kJ kg−1. However, all treated defatted date-pits showed a cold crystallization as indicated by exothermic peak (i.e., 423–433 K). Ethanol pre-treated sample showed the highest specific heat change (i.e., 380 J kg−1 K−1) at their glass transition temperature (i.e., the highest fraction of amorphous component) and the highest solids melting-decomposition peak at 460 K and enthalpy of 239 kJ kg−1 (i.e., more energy needed to decompose molecular networks). Microwave pre-treated sample showed the highest crystalline lignocellulosic fibers. High crystalline lignocellulose is required when it is used as fillers in bio-composites and as ingredients to form crust in food products, while amorphous lignocellulose is required in breads to make it more soft crumb and bioplastic films for their flexibility. Fourier Transform Infrared (FTIR) spectra of all treated date-pits showed higher absorptions, and this indicated more interlinking ability with other components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manickavasagan A, Essa MM, Sukumar E. Dates: production, processing, food, and medicinal values. London: CRC Press; 2012.

    Book  Google Scholar 

  2. Jamil F, Al-Muhtaseb AH, Al-Haj L, Al-Hinai MA, Hellier P, Rashid U. Optimization of oil extraction from waste “Date pits” for biodiesel production. Energy Convers Manag. 2016;117:264–72. https://doi.org/10.1016/j.enconman.2016.03.025.

    Article  CAS  Google Scholar 

  3. Al-Kharousi N, Al-Khusaibi M, Al-Bulushi I, Guizani N, Waly M, Rahman MS. Physico-chemical characteristics and oxidative stability of date-pits oil during storage at different temperatures. Int J Food Eng. 2016;12(4):385–93.

    Article  CAS  Google Scholar 

  4. Rahman MS, Al-Marhubi IM, Al-Mahrouqi A. Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: a comparison study. Chem Phys Lett. 2007;440(4–6):372–7.

    Article  CAS  Google Scholar 

  5. Waly MI, Al-Ghafri BR, Guizani N, Rahman MS. Phytonutrient effects of date pit extract against azoxymethane-induced oxidative stress in the rat colon. Asian Pac J Cancer Prev. 2015;16(8):3473–7.

    Article  PubMed  Google Scholar 

  6. Souissi M, Guesmi A, Moussa A. Valorization of natural dye extracted from date palm pits (Phoenix dactylifera) for dyeing of cotton fabric. Part 1: Optimization of extraction process using Taguchi design. J Clean Prod. 2018;202:1045–55.

    Article  CAS  Google Scholar 

  7. Krishnamoorthy R, Govindan B, Banat F, Sagadevan V, Purushothaman M, Show PL. Date pits activated carbon for divalent lead ions removal. J Biosci Bioeng. 2019;128(1):88–97.

    Article  CAS  PubMed  Google Scholar 

  8. Dalhat M. Utilization of date pits waste as aggregate alternative in sand-epoxy-resin composite. Constr Build Mater. 2020;236:117585.

    Article  CAS  Google Scholar 

  9. Hossain MZ, Waly MI, Singh V, Sequeira V, Rahman MS. Chemical composition of date-pits and its potential for developing value-added product—a review. Polish J Food Nutr Sci. 2014;64(4):215–26.

    Article  CAS  Google Scholar 

  10. Nabili A, Fattoum A, Passas R, Elaloui E. Extraction and characterization of cellulose from date palm seeds (Phoenix dactylifera L.). Cell Chem Technol. 2016;50:1015–23.

    CAS  Google Scholar 

  11. Hamada JS, Hashim IB, Sharif FA. Preliminary analysis and potential uses of date pits in foods. Food Chem. 2002;76(2):135–7. https://doi.org/10.1016/S0308-8146(01)00253-9.

    Article  CAS  Google Scholar 

  12. El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome. Int J Mol Med. 2017;40(3):607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith CE, Tucker KL. Health benefits of cereal fibre: a review of clinical trials. Nutr Res Rev. 2011;24(1):118–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferguson L, Roberton A, Watson M, Triggs C, Harris P. The effects of a soluble-fibre the adsorption of carcinogens fibres polysaccharide on to insoluble dietary. Chem Biol Interact. 1995;95:245–55.

    Article  CAS  PubMed  Google Scholar 

  15. Kruer-Zerhusen N, Cantero-Tubilla B, Wilson DB. Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose. 2018;25(1):37–48.

    Article  CAS  Google Scholar 

  16. Katina K, Salmenkallio-Marttila M, Partanen R, Forssell P, Autio K. Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT-Food Science and Technology. 2006;39(5):479–91.

    Article  CAS  Google Scholar 

  17. Kiumarsi M, Shahbazi M, Yeganehzad S, Majchrzak D, Lieleg O, Winkeljann B. Relation between structural, mechanical and sensory properties of gluten-free bread as affected by modified dietary fibers. Food Chem. 2019;277:664–73.

    Article  CAS  PubMed  Google Scholar 

  18. Najafi MBH, editor. Date seeds: a novel and inexpensive source of dietary fiber. In: International conference on food engineering and biotechnology; 2011.

  19. Bouaziz MA, Abbes F, Mokni A, Blecker C, Attia H, Besbes S. The addition effect of Tunisian date seed fibers on the quality of chocolate spreads. J Texture Stud. 2017;48(2):143–50.

    Article  PubMed  Google Scholar 

  20. Al-Yousef Y, Belyea R, Vandepopuliere J, editors. Sodium hydroxide treatment of date pits. In: Proceedings of the Second Symposium on the Date Palm in Saudi Arabia; 1986.

  21. Obese F, Osafo E, Okai D. Evaluation of the feeding value of palm press fibre using in vitro digestibility techniques. Trop Anim Health Prod. 2001;33(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  22. Nancib N, Nancib A, Boudrant J. Use of waste date products in the fermentative formation of baker’s yeast biomass by Saccharomyces cerevisiae. Biores Technol. 1997;60(1):67–71.

    Article  CAS  Google Scholar 

  23. Ghazanfari A, Emami S, Panigrahi S, Tabil L. Thermal and mechanical properties of blends and composites from HDPE and date pits particles. J Compos Mater. 2008;42(1):77–89.

    Article  CAS  Google Scholar 

  24. Kassaye S, Pant KK, Jain S. Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renew Energy. 2017;104:177–84.

    Article  CAS  Google Scholar 

  25. Singh SS, Lim L-T, Manickavasagan A. Ultrasound-assisted alkali-urea pre-treatment of Miscanthus× giganteus for enhanced extraction of cellulose fiber. Carbohydr Polym. 2020;247:116758.

    Article  CAS  PubMed  Google Scholar 

  26. Panyasiri P, Yingkamhaeng N, Lam NT, Sukyai P. Extraction of cellulose nanofibrils from amylase-treated cassava bagasse using high-pressure homogenization. Cellulose. 2018;25(3):1757–68.

    Article  CAS  Google Scholar 

  27. Vena P, Görgens J, Rypstra T. Hemicelluloses extraction from giant bamboo prior to kraft and soda AQ pulping to produce paper pulps, value-added biopolymers and bioethanol. Cellul Chem Technol. 2010;44(4):153.

    CAS  Google Scholar 

  28. Sim B, Bae DH, Choi HJ, Choi K, Islam MS, Kao N. Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields. Cellulose. 2016;23(1):185–97.

    Article  CAS  Google Scholar 

  29. Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, et al. Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem. 2016;18(4):1010–8.

    Article  CAS  Google Scholar 

  30. Rouhou MC, Abdelmoumen S, Thomas S, Attia H, Ghorbel D. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): structural and microstructural studies. Int J Biol Macromol. 2018;116:901–10.

    Article  CAS  Google Scholar 

  31. Chadni M, Grimi N, Ziegler-Devin I, Brosse N, Bals O. High voltage electric discharges treatment for high molecular weight hemicelluloses extraction from spruce. Carbohydr Polym. 2019;222:115019.

    Article  CAS  PubMed  Google Scholar 

  32. Suresh S, Guizani N, Al-Ruzeiki M, Al-Hadhrami A, Al-Dohani H, Al-Kindi I, et al. Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J Food Eng. 2013;119(3):668–79.

    Article  CAS  Google Scholar 

  33. Al-Mawali M, Al-Habsi N, Rahman MS. Thermal characteristics and proton mobility of date-pits and their alkaline treated fibers. Food Eng Rev. 2020;13:236–46.

    Article  CAS  Google Scholar 

  34. Al-Khalili M, Al-Habsi N, Al-Alawi A, Al-Subhi L, Myint MTZ, Al-Abri M, et al. Structural characteristics of alkaline treated fibers from date-pits: Residual and precipitated fibers at different pH. Bioactive Carbohydr Diet Fibre. 2021;25:100251.

    Article  CAS  Google Scholar 

  35. Soest PV. Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. J Assoc Offic Agric Chem. 1963;46(5):825–9.

    Google Scholar 

  36. Soest PV. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Offic Agric Chem. 1963;46(5):829–35.

    Google Scholar 

  37. Rahman M, Al-Saidi G, Guizani N. Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim Acta. 2010;509:111–9. https://doi.org/10.1016/j.tca.2010.06.011.

    Article  CAS  Google Scholar 

  38. Rorden C. ezANOVA, Version 0.98. 2007.

  39. Srivastava M, Sengupta S, Das P, Datta S. Novel pre treatment techniques for extraction of fermentable sugars from natural waste materials for bio ethanol production. Int J Env Sci Nat Res. 2017;7:1–7.

    Google Scholar 

  40. Velmurugan B, Narra M, Rudakiya DM, Madamwar D. 10 - Sweet sorghum: a potential resource for bioenergy production. In: Kumar RP, Gnansounou E, Raman JK, Baskar G, editors. Refining biomass residues for sustainable energy and bioproducts. Academic Press; 2020. p. 215–42.

    Chapter  Google Scholar 

  41. Deshavath NN, Veeranki VD, Goud VV. Chapter 1—Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In: Rai M, Ingle AP, editors. Sustainable bioenergy. Elsevier; 2019. p. 1–19.

    Google Scholar 

  42. Johari G. Comment on: “Relaxation time of high-density amorphous ice, by PH Handle, M. Seidl, T. Loerting; Phys. Rev. Lett. 108 (2012) 225901”. The α-relaxation time of strained state of high-density amorphous ice at T < Tg, its Tg, and its transformations. Thermochim Acta. 2014;589:76–84.

  43. Sun J, Sun X, Zhao H, Sun R. Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab. 2004;84(2):331–9.

    Article  CAS  Google Scholar 

  44. Zhang H, Wu J, Zhang J, He J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005;38(20):8272–7.

    Article  CAS  Google Scholar 

  45. Byrne N, De Silva R, Ma Y, Sixta H, Hummel M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose. 2018;25(1):723–33.

    Article  CAS  PubMed  Google Scholar 

  46. Sun R, Sun X, Tomkinson J. Hemicelluloses and their derivatives. 2004.

  47. Reddy KO, Uma Maheswari C, Muzenda E, Shukla M, Rajulu AV. Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. J Nat Fibers. 2016;13(1):54–64.

    Article  CAS  Google Scholar 

  48. Shen M, Weihao W, Cao L. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity. J Food Sci. 2020;85(6):1668–74.

    Article  CAS  PubMed  Google Scholar 

  49. Pastorova I, Botto RE, Arisz PW, Boon JJ. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res. 1994;262(1):27–47.

    Article  CAS  Google Scholar 

  50. Izydorczyk MS, Biliaderis CG. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym. 1995;28(1):33–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the His Majesty Trust Funds (SR/AGR/FOOD/2019/1). The major focus was to valorize the under-utilized food waste for economic gain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Al-Habsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mamari, A., Al-Habsi, N., Al-Khalili, M. et al. Extraction and characterization of residue fibers from defatted date-pits after alkaline-acid digestion: effects of different pretreatments. J Therm Anal Calorim 147, 9405–9416 (2022). https://doi.org/10.1007/s10973-022-11237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11237-3

Keywords

Navigation