Skip to main content
Log in

Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In recent years, with the adaptation of nanotechnological engineering applications to complex systems, the use of nanofluids with better thermo-physical properties compared to conventional fluids has become widespread. In addition, studies on the preparation techniques of nanofluids, improving their thermal properties and evaluating their thermal performance are increasing. This study presents a review about preparation, evaluating and enhancement of the stability and thermal properties of nanofluids. Furthermore, the recent advances about the thermo-hydraulic, thermodynamic and thermo-economic performances of nanofluids in different types of thermal systems are summarized as well. The stability of nanofluid is a significant factor affecting its applicability. Various techniques have been used in the literature to enhance the stability of nanofluids such as surfactant addition, ultrasonic mixing and pH control. By using nanofluids, the desired thermo-physical properties can be obtained in order to improve the heat transfer property in the system. Some researchers recommend to hybrid nanofluids because of the hybrid effect of two or more particle types they contain. The reviewed literature also indicates that the use of nanofluids instead of conventional working fluids is an effective way to increase the thermo-hydraulic performance of thermal systems. In addition, according to the literature review, minimum entropy generation is an effective way to increase the energy efficiency and improve thermodynamic performance of the thermal system and the use of nanofluids provide a significant reduction in entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DI:

Deionized

EG:

Ethylene glycol

DEG:

Diethylene glycol

DW:

Distilled water

HE:

Heat exchanger

CTAB:

Cetyltrimethylammonium bromide

SDBS:

Sodium dodecylbenzenesulfonate

SDS:

Sodium dodecyl sulfate

vol:

Volume

PG:

Polyglycol

DLS:

Dynamic light scattering

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

FMWCNT:

Functionalized multi‐walled carbon nanotube

SWCNT:

Single-walled carbon nanotube

ISSRC:

Integrated solar regenerative Rankine cycle

TEM:

Transmission electron microscopy

FESEM:

Field emission scanning electron microscopy

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

F:

Friction factor

D:

Inner diameter of microchannel, m

knf :

Thermal conductivity of nanofluid

kbf :

Thermal conductivity of base fluid

μ :

Viscosity (kg m1 s)

ρ :

Density (kg m3)

\(\dot{m}\) :

Mass flow rate, kg s−1

Δp :

Pressure drop (Pa)

λ m :

Thermal conductivity of nanofluid (W m1 K1)

λ f :

Thermal conductivity of liquid metal (W m1 K1)

h :

Forced convection heat transfer coefficient (W m2 K1)

References

  1. Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy J. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  2. Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  3. She L, Fan G. Numerical simulation of flow and heat transfer characteristics of CuO-water nanofluids in a flat tube. Front Energy Res. 2018;6:1–8.

    Article  Google Scholar 

  4. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53.

    Article  CAS  Google Scholar 

  5. Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Therm Fluid Sci. 2016;74:11–8.

    Article  CAS  Google Scholar 

  6. Unverdi M, Islamoglu Y. Characteristics of heat transfer and pressure drop in a chevron type plate heat exchanger with Al2O3/water nanofluids. Therm Sci. 2017;21:2379–91.

    Article  Google Scholar 

  7. Devendiran DK, Amirtham VA. A review of preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;2016(60):21–40.

    Article  CAS  Google Scholar 

  8. Gürü M, Sözen A, Karakaya U, Çiftçi E. Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: an experimental study. Appl Therm Eng. 2019;148:632–40.

    Article  CAS  Google Scholar 

  9. Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. Int Commun Heat Mass Transf. 2014;57:297–303.

    Article  CAS  Google Scholar 

  10. Sözen A, Menlik T, Gürü M, Boran K, Kılıç F, Aktaş M, Çakır MT. A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes. Appl Therm Eng. 2016;96:330–7.

    Article  CAS  Google Scholar 

  11. Sözen A, Menlik T, Aktaş M, Gürü M. Utilization of blast furnace slag nano fluids in two-phase closed thermos-syphon heat pipes for enhancing heat transfer. Exp Heat Transf. 2017;30:112–25.

    Article  CAS  Google Scholar 

  12. Yılmaz Aydın D, Gürü M, Sözen A, Çiftçi E. Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid. Int J Renew Energy Dev. 2020;9:23–7.

    Article  CAS  Google Scholar 

  13. Yılmaz Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of thermosyphon heat pipe working with bauxite nanofluid. Energy Sour A Recov Util Environ Eff. 2021;43:1524–2548.

    Article  CAS  Google Scholar 

  14. Yılmaz Aydın D, Gürü M, Sözen A, Çiftçi E. Investigation of the effects of base fluid type of the nanofluid on heat pipe performance. Energy Sour A Recov Util Environ Eff. 2021;235:124–38.

    Google Scholar 

  15. Khanlari A, Yılmaz Aydın D, Sözen A, et al. Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger. Heat Mass Trans. 2020;56:1453–62.

    Article  CAS  Google Scholar 

  16. Moravej M, Mehdi Vahabzadeh B, Yu G, Larry KBL, Mohammad Hossein D, Kun H, Qingang X. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustain Energy Technol. 2020;40:100783.

    Google Scholar 

  17. Bozorg MV, Mohammad Hossein D, Kun H, Qingang X. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renew Energy. 2020;145:2598–614.

    Article  CAS  Google Scholar 

  18. Saffarian MR, Mojtaba M, Mohammad HD. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    Article  CAS  Google Scholar 

  19. Nikkam N, Toprak MS. Fabrication and thermo-physical characterization of silver nanofluids: an experimental investigation on the effect of base liquid. Int Commun Heat Mass. 2018;91:196–200.

    Article  CAS  Google Scholar 

  20. Nikkam N, Ghanbarpor M, Saleemi M, Toprak MS, Muhammed M, Khodabandeh R. Thermal and rheological properties of micro- and nanofluids of copper in diethylene glycol – as heat exchange liquid. In: Proceedings of the Symposium on Nanoscale Heat Transport—From Fundamentals to Devices, vol. 1543, Materials Research Society, San Francisco, USA, 2013; http://dx.doi.org/https://doi.org/10.1557/opl.2013.675.

  21. Durga Prasad PV, Gupta AVSSKS, Sreeramulu M, Syam Sundar L, Singh MK, Antonio CMS. Experimental study of heat transfer and friction factor of Al2O3 nanofluid in U-tube heat exchanger with helical tape inserts. Exp Thermal Fluid Sci. 2015;62:141–50.

    Article  CAS  Google Scholar 

  22. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Trans. 2014;52:73–83.

    Article  CAS  Google Scholar 

  23. Wongcharee KSE. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Trans. 2011;38:742–8.

    Article  CAS  Google Scholar 

  24. Reddy MCS, Rao VV. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Trans. 2014;50:68–76.

    Article  CAS  Google Scholar 

  25. Li X, Chen Y, Mo S, Jia L, Shao X. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta. 2014;595:6–10.

    Article  CAS  Google Scholar 

  26. Tiwari AKP, Ghosh JS. Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng. 2013;57:24–32.

    Article  CAS  Google Scholar 

  27. Suganthi KS, Leela V, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluidcoolants. Appl Energy. 2014;135:548–59.

    Article  CAS  Google Scholar 

  28. Piratheepan MTNA. An experimental investigation of turbulent forced convection heat transfer by a multi-walled carbon-nanotube nanofluid. Int Commun Heat Mass Trans. 2014;57:286–90.

    Article  CAS  Google Scholar 

  29. Gupta N, Gupta SM, Sharma SK. Synthesis, characterization and dispersion stability of water-based Cu–CNT hybrid nanofluid without surfactant. Microfluid Nanofluid. 2021;25:14.

    Article  CAS  Google Scholar 

  30. Valan AA, Dhinesh KD, Idrish KA. Experimental investigation of thermal conductivity and stability of TiO2-Ag/Water nanocomposite fluid with SDBS and SDS surfactants. Thermochim Acta. 2019;678:178308.

    Article  CAS  Google Scholar 

  31. Aparna Z, Michael M, Pabi SK, Ghosh S. Thermal conductivity of aqueous Al2O3/Ag hybrid nano fluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol. 2019;343:714–22.

    Article  CAS  Google Scholar 

  32. Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017; 263.

  33. Timofeeva EV, Yu W, France DM, Singh D, Routbort JL. Base fluid and temperature effects on the heat transfer characteristics of SiC in EG/H2O and H2O nanofluids. J Appl Phys. 2011;109:014914.

    Article  CAS  Google Scholar 

  34. Nikkam N, Morteza G, Rahmatollah K, Muhammet ST. The effect of particle size and base liquid on thermo-physical properties of ethylene and diethylene glycol based copper micro- and nanofluids. Int Commun Heat Mass Trans. 2017;86:143–9.

    Article  CAS  Google Scholar 

  35. Shahril SM, Quadir GA, Amin NAM, Badruddin IA. Numerical investigation on the thermohydraulic performance of a shell-and-double concentric tube heat exchanger using nanofluid under the turbulent flow regime. Numer Heat Tran A. 2017;71:215–31.

    Article  CAS  Google Scholar 

  36. Kumar M, Vasu V, Gopal A. Thermal conductivity and viscosity of vegetable oil-based Cu, Zn, and Cu–Zn hybrid nanofluids. J Test Eval. 2016;44:1077–83.

    Article  CAS  Google Scholar 

  37. Chen M, He Y, Zhu J, Wen D. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Appl Energy. 2016;181:65–74.

    Article  CAS  Google Scholar 

  38. Mohamed MM, Mahmoud NH, Farahat MA. Energy storage system with flat plate solar collector and water-ZnO nanofluid. Sol Energy. 2020;202:25–31.

    Article  CAS  Google Scholar 

  39. Noghrehabadi A, Hajidavalloo E, Moravej M. Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud Therm Eng. 2016;8:378–86.

    Article  Google Scholar 

  40. Choudhary S, Sachdeva A, Kumar P. Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renew Energy. 2020;147:1801–14.

    Article  CAS  Google Scholar 

  41. Zhong D, Zhong H, Wen T. Investigation on the thermal properties, heat transfer and flow performance of a highly self-dispersion TiO2 nanofluid in a multiport mini channel. Int Commun Heat Mass Trans. 2020;117:104783.

    Article  CAS  Google Scholar 

  42. Reddy PS, Sreedevi P. Effect of thermal radiation and volume fraction on carbon nanotubes based nanofluid flow inside a square chamber. Alex Eng J. 2021;60:1807–17.

    Article  Google Scholar 

  43. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252–4.

    Article  CAS  Google Scholar 

  44. Li X, Chen W, Zou C. The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: a surface modification approach. Powder Technol. 2020;361:957–67.

    Article  CAS  Google Scholar 

  45. Wang W, Lin L, Feng ZX, Wang SY. A comprehensive model for the enhanced thermal conductivity of nanofluids. Int J Adv Appl Phys Res. 2012;3:021209.

    Google Scholar 

  46. Sankar PRJ, Venkatachalapathy S, Asirvatham LG, Wongwises S. Effect of coated mesh wick on the performance of cylindrical heat pipe using graphite nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09944-w.

    Article  Google Scholar 

  47. Keklikcioglu CN. The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. J Therm Anal Calorim. 2020;139:1895–902.

    Article  CAS  Google Scholar 

  48. Hong Z, Pei J, Wang Y, Cao B, et al. Characteristics of the direct absorption solar collectors based on reduced graphene oxide nanofluids in solar steam evaporation. Energy Convers Manag. 2019;199:11209.

    Article  CAS  Google Scholar 

  49. Sadeghinezhad E, Mehrali M, Tahan Latibari S, Mehrali M, Kazi SN, Oon CS, Metselaar HSC. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Ind Eng Chem Res. 2014;53:12455–65.

    Article  CAS  Google Scholar 

  50. Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Ahadi M, Sharif F. Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube. J Dispers Sci Technol. 2014;35:1230–40.

    Article  CAS  Google Scholar 

  51. Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Sharif F, Ahadi M. Experimental investigation of laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube. Int J Therm Sci. 2016;100:316–23.

    Article  CAS  Google Scholar 

  52. Arzani HK, Amiri A, Kazi S, Chew B, Badarudin A. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int Commun Heat Mass Trans. 2015;68:267–75.

    Article  CAS  Google Scholar 

  53. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/ water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    Article  CAS  Google Scholar 

  54. Ghalambaz M, Doostani A, Izadpanahi E, et al. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J Therm Anal Calorim. 2020;139:2321–36.

    Article  CAS  Google Scholar 

  55. Sundar SL, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor- a review. Renew Sustain Energy Rev. 2017;68:185–98.

    Article  CAS  Google Scholar 

  56. Nine MJ, Batmunkh M, Kim JH, Chung HS, Jeong HM. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechnol. 2012;12:4553–9.

    Article  CAS  PubMed  Google Scholar 

  57. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.

    Article  CAS  Google Scholar 

  58. Yarmand H, Zulkifli NWBM, Gharehkhani S, Shirazi SFS, Alrashed AA, Ali MAB, Dahari M, Kazi S. Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Trans. 2017;88:120–5.

    Article  CAS  Google Scholar 

  59. Ali N, Teixeira JA, Addali A. A review on nanofluids: fabrication, stability, and thermophysical properties. J Nanomater. 2018;6978130:33.

    Google Scholar 

  60. Mansour DA, Atiya EG, Khattab RM, Azmy AM. Effect of titania nanoparticles on the dielectric properties of transformer oil-based nanofluids. Annual report conference on electrical insulation and dielectric phenomena, Montreal, QC, Canada. 2012;295–298.

  61. Ilyas S, Pendyala R, Marneni N, Lim S. Stability, rheology and thermal analysis of functionalized aluminathermal oil-based nanofluids for advanced cooling systems. Energy Convers Manag. 2017;142:215–29.

    Article  CAS  Google Scholar 

  62. Fontes DH, Ribatski G, Bandarra Filho EP. Experimental evaluation of thermal conductivity. Viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam Relat Mater. 2015;58:115–21.

    Article  CAS  Google Scholar 

  63. Sözen A, Gürü M, Menlik T, Karakaya A, Çiftçi E. Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO2–deionized water nanofluid in a thermosiphon. Exp Heat Transf. 2018;31:450–69.

    Article  CAS  Google Scholar 

  64. Sabiha MA, Mostafizur RM, Saidur R, Mekhilef S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf. 2016;93:862–71.

    Article  CAS  Google Scholar 

  65. Asadi A, Pourfattah F, Miklós Szilágyi I, Afrand M, Zyła G, Seon Ahn H, Wongwises S, Minh Nguyen H, Arabkoohsar A, Mahian O. Effect of sonication characteristics on stability thermophysical properties and heat transfer of nanofluids: a comprehensive review. Ultrason Sonochem. 2019;58:104701.

    Article  CAS  PubMed  Google Scholar 

  66. Mohammadpoor MS, Sabbaghi MM, Zerafat ZM. Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes. Int J Refrig. 2019;99:243–50.

    Article  CAS  Google Scholar 

  67. Bakthavatchalam B, Khairul H, Saidur R, Bidyut BS, Kashif I. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: a review on current and future perspective. J Mol Liq. 2020;305:112787.

    Article  CAS  Google Scholar 

  68. Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89–101.

    Article  CAS  Google Scholar 

  69. Chakraborty S, Panigrahi PK. Stability of nanofluid: a review. Appl Therm Eng. 2020;174:115259.

    Article  CAS  Google Scholar 

  70. Hong H, Wright B, Wensel J, Jin S, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth. 2007;157(10):437–40.

    CAS  Google Scholar 

  71. Chang H, Tsung TT, Lin CR, Lin HM, Lin CK, Lo CH, et al. A study of magnetic field effect on nanofluid stability of CuO. Mater Trans. 2004;45(4):1375–8.

    Article  CAS  Google Scholar 

  72. Zhang T, Zou Q, Cheng Z, Chen Z, Liu Y, Jiang Z. Effect of particle concentration on the stability of water-based SiO2 nanofluid. Powder Technol. 2021;379:457–65.

    Article  CAS  Google Scholar 

  73. Yang L, Hu Y. Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res Lett. 2017;12:417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bushehri MK, Mohebbi A, Rafsanjani HH. Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. J Eng Thermophys. 2016;25:389–400.

    Article  Google Scholar 

  75. Hong J, Kim D. Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta. 2012;542:28–32.

    Article  CAS  Google Scholar 

  76. Arthur O, Karim MA. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew Sustain Energy Rev. 2016;55:739–55.

    Article  CAS  Google Scholar 

  77. Kim HJ, Bang IC, Onoe J. Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng. 2009;47:532–8.

    Article  Google Scholar 

  78. Xian HW, Sidik NOC, Saidur R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Trans. 2020;110:104389.

    Article  CAS  Google Scholar 

  79. Şahin F, Namlı L. Nanoakışkanlarda kararlılığın ısı transferini iyileştirme açısından önemi. Nohu Müh Bilim Derg. 2018;7:880–98.

    Google Scholar 

  80. Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nano-tubes. J Coll Interface Sci. 2003;260:89–94.

    Article  CAS  Google Scholar 

  81. Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys. 2012;408:11–6.

    Article  CAS  Google Scholar 

  82. Mukherjee S, Paria S. Preparation and stability of nanofluids- a review. IOSR J Mech Eng. 2013;9:63–9.

    Article  Google Scholar 

  83. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int Commun Heat Mass Trans. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  84. Kong L, Sun J, Bao Y. Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 2017;7:12599–609.

    Article  CAS  Google Scholar 

  85. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-H2O nanofluids. Exp Therm Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  86. Li X, Zhu D, Wang X. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Coll Interface Sci. 2007;31:456–63.

    Article  CAS  Google Scholar 

  87. Yılmaz Aydın D, Gürü M, Sözen A. Experimental investigation on thermal performance of thermosyphon heat pipe using dolomite/deionized water nanofluid depending on nanoparticle concentration and surfactant type. Heat Transf Res. 2020;51:1073–85.

    Article  Google Scholar 

  88. Chen HJ, Wen D. Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Res Let. 2011;6:198.

    Article  CAS  Google Scholar 

  89. Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem. 2017;37:360–7.

    Article  CAS  PubMed  Google Scholar 

  90. Azmi WH, Hamid KA, Mamat R, Sharma KV, Mohamad M. Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–Ethylene glycol mixture. Appl Therm Eng. 2016;106:1190–9.

    Article  CAS  Google Scholar 

  91. Mahbubul IM, Saidur R, Amalina MA, Niza ME. Influence of ultrasonication duration on rheological properties of nanofluid: an experimental study with alumina–water nanofluid. Int Commun Heat Mass Transf. 2016;76:33–40.

    Article  CAS  Google Scholar 

  92. Salafi T, Kwek KZ, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17:11–33.

    Article  CAS  Google Scholar 

  93. Zhang H, Qing S, Zhai Y, Zhang X, Zhang A. The changes induced by pH in TiO2/water nanofluids: stability, thermophysical properties and thermal performance. Powder Technol. 2021;377:748–59.

    Article  CAS  Google Scholar 

  94. Azizian R, Doroodchi E, Moghtaderi B. Influence of controlled aggregation on thermal conductivity of nanofluids. J Heat Transf. 2016;138:021301.

    Article  CAS  Google Scholar 

  95. Lee D, Kim JW, Kim BG. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B. 2006;110:4323–8.

    Article  CAS  PubMed  Google Scholar 

  96. Wang XJ, Zhu DS, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett. 2009;470:107–11.

    Article  CAS  Google Scholar 

  97. Wamkam CT, Opoku MK, Hong H, Smith P. Effects of on heat transfer nanofluids containing and nanoparticles. J Appl Phys. 2011;109(2):024305.

    Article  CAS  Google Scholar 

  98. Ju L, Zhang W, Wang X, Hu J, Zhang Y. Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions. Coll Surf A Physicochem Eng Asp. 2012;409:159–66.

    Article  CAS  Google Scholar 

  99. Zainon SNM, Azmi WH. Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids. Micromachines. 2021;12(2):176.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Arora N, Gupta M. Stability evaluation and enhancement methods in nanofluids: a review. AIP Conf Proc. 2021;2341:040022.

    Article  Google Scholar 

  101. Alawi OA, Sidik NA, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116:1314–25.

    Article  CAS  Google Scholar 

  102. Maxwell JCA. Treatise on Electricity and Magnetism. Cambridge: Oxford University Press; 1904.

    Google Scholar 

  103. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  104. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.

    Article  CAS  Google Scholar 

  105. Eastman JA, Phillpot SR, Choi SUS, Keblinski P. Thermal transport in nanofluids. Ann Rev Mater Res. 2004;219–246.

  106. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51:1431–8.

    Article  CAS  Google Scholar 

  107. Singh PK, Anoop KB, Sundararajan T, Das SK. Entropy generation due to flow and heat transfer in nanofluids. IJHMT. 2010;53:4757–67.

    Article  CAS  Google Scholar 

  108. Wang BX, Zhou LP, Peng XF. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf. 2003;46:2665–72.

    Article  CAS  Google Scholar 

  109. Afrand MD, Toghraie NS. Experimental study on thermal conductivity of water based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Trans. 2016;75:262–9.

    Article  CAS  Google Scholar 

  110. Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Trans. 2016;73:75–83.

    Article  CAS  Google Scholar 

  111. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D. Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol. 2015;26(3):935–46.

    Article  CAS  Google Scholar 

  112. Awais RM, Ullah N, Ahmad J, Sikandar F, Ehsan MM, Salehin S, Bhuiyan AA. Heat transfer and pressure drop performance of Nanofluid: a state-of- the-art review. Int J Thermofluid. 2021;9:100065.

    Article  Google Scholar 

  113. Sahin B, Gültekin GG, Manay E, Karagöz S. Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid. Exp Therm Fluid Sci. 2013;50:21–8.

    Article  CAS  Google Scholar 

  114. Tiecher RF, Parise JA. A comparative parametric study on single-phase Al2O3-water nanofluid exchanging heat with a phase-changing fluid. Int J Therm Sci. 2013;74:190–8.

    Article  CAS  Google Scholar 

  115. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, et al. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphenebased nanofluids. Int Commun Heat Mass Transfer. 2016;76:16–23.

    Article  CAS  Google Scholar 

  116. Akhavan-Behabadi M, Shahidi M, Aligoodarz MR, Fakoor-Pakdaman M. An experimental investigation on rheological properties and heat transfer performance of MWCNT-water nanofluid flow inside vertical tubes. Appl Therm Eng. 2016;106:916–24.

    Article  CAS  Google Scholar 

  117. Ezekwem C, Dare A. Thermal and electrical conductivity of silicon carbide nanofluids. Energy Sources A Recovery Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1792591.

    Article  Google Scholar 

  118. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Coll Surf A Physicochem Eng Asp. 2011;388:41–8.

    Article  CAS  Google Scholar 

  119. Gandhi KSK, Velayutham M, Das SK, Thirumalachari S. Measurement of thermal and electrical conductivities of graphene nanofluids. Paper presented at the 3rd Micro and Nano Flows Conference, Thessaloniki, Greece, 2011.

  120. Sahooli M, Sabbaghi S. Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture. Mater Lett. 2013;93:254–7.

    Article  CAS  Google Scholar 

  121. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid-a review. Renew Sustain Energy Rev. 2017;75:451–60.

    Article  Google Scholar 

  122. Chopkar M, Sudarshan S, Das PK, Manna I. Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A. 2008;39:1535–42.

    Article  CAS  Google Scholar 

  123. Maheswary PB, Hand CC, Nemade KR. A comprehensive study of effect of concentration, particle size andparticle shape on thermal conductivity of titania/water based nanofluid. Appl Therm Eng. 2017;119:79–88.

    Article  CAS  Google Scholar 

  124. Sun C, Bai B, Lu W, Liu J. Shear-rate dependent effective thermal conductivity of H2O+SiO2 nanofluids. Phys Fluids. 2013;2025:052002.

    Google Scholar 

  125. Yashawantha K, Asif A, Babu RG, Ramis M. Rheological behavior and thermal conductivity of graphite–ethylene glycol nanofluid. J Test Eval. Published ahead of print; 2021.

  126. Reddy MCS, Rao VV. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.

    Article  CAS  Google Scholar 

  127. Abdolbaqi MK, Azmi WH, Mamat R, Sharma KV, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of bioglycol -water mixture based Al2O3 nanofluid. Appl Therm Eng. 2016;102:932–41.

    Article  CAS  Google Scholar 

  128. Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G. Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia. 2015;79:397–402.

    Article  CAS  Google Scholar 

  129. Dadwal A, Joy PA. Particle size effect in different base fluids on the thermal conductivity of fatty acid coated magnetite nanofluids. J Mol Liq. 2020;303:112650.

    Article  CAS  Google Scholar 

  130. Udawattha DS, Narayana M, Wijayarathne UPL. Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles. J King Saud Univ Sci. 2019;31(3):412–26.

    Article  Google Scholar 

  131. Sundar LS, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf. 2013;44:7–14.

    Article  CAS  Google Scholar 

  132. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci. 2017;81:420–9.

    Article  CAS  Google Scholar 

  133. Naik MT, Sundar LS. Investigation into thermophysical properties of glycol based CuO nanofluids for heat transfer applications. World Acad Sci Eng Technol. 2011;59:440–6.

    Google Scholar 

  134. Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90.

    Article  CAS  Google Scholar 

  135. Tseng WJ, Chen C. Effect of polymeric dispersant on rheological behavior of nickel-terpineol suspensions. Mater Sci Eng A. 2003;347:145–53.

    Article  Google Scholar 

  136. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52.

    Article  CAS  Google Scholar 

  137. Anoop KB, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys. 2009;106:034909.

    Article  CAS  Google Scholar 

  138. Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta. 2012;545:180–6.

    Article  CAS  Google Scholar 

  139. Moldoveanu GM, Ibanescu C, Danu M, Minea AA. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J Mol Liq. 2018;253:188–96.

    Article  CAS  Google Scholar 

  140. Aydın DY, Gürü M, Sözen A. Preparation of Bauxite/Deionized water nanofluid and experimental investigation of its thermophysical properties. Politeknik Dergisi. 2021. https://doi.org/10.2339/politeknik.649417.

    Article  Google Scholar 

  141. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Trans. 2016;74:108–13.

    Article  CAS  Google Scholar 

  142. Banisharif A, Aghajani M, Vaerenbergh SV, Estellé P, Rashidi A. Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature. J Mol Liq. 2020;302:112606.

    Article  CAS  Google Scholar 

  143. Jarahnejad M, Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Palm B, et al. Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol Acta. 2015;54:411–22.

    Article  CAS  Google Scholar 

  144. Turgut A, Saglanmak S, Doganay S. Experimental investigation on thermal conductıvity and viscosity of nanofluids: particle size effect. J Fac Eng Archit Gazi Univ. 2016;31(1):95–103.

    Google Scholar 

  145. Agarwal DK, Vaidyanathan A, Sunil KS. Investigation on convective heat transfer behavior of kerosene-Al2O3 nanofluid. Appl Therm Eng. 2015;84:64–73.

    Article  CAS  Google Scholar 

  146. Minakov AV, Guzei DV, Pryazhnikov MI, Zhigarev VA, Rudyak VY. Study of turbulent heat transfer of the nanofluids in a cylindrical channel. Int J Heat Mass Trans. 2016;102:745–55.

    Article  CAS  Google Scholar 

  147. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.

    Article  CAS  Google Scholar 

  148. Nguyen C, Desgranges F, Roy G, Galanis N, Mare T, Minsta BS, HA, . Temperature and particle-size dependent viscosity data for water-based nano-fluids - hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.

    Article  CAS  Google Scholar 

  149. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Montazer E, Arzani HK, et al. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf. 2016;72:10–5.

    Article  CAS  Google Scholar 

  150. Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of Specific Heat of Nanofluids. Curr Nanosci. 2012;8:939–44.

    Article  CAS  Google Scholar 

  151. Doruk S, Şara ON, Karaipekli A, et al. Heat transfer performance of water and Nanoencapsulated n-nonadecane based Nanofluids in a double pipe heat exchanger. Heat Mass Trans. 2017;53:3399–408.

    Article  CAS  Google Scholar 

  152. Ho CJ, Liu YC, Ghalambaz M, Yan WM. Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heatsink. Int J Heat Mass Transf. 2020;155:119858.

    Article  CAS  Google Scholar 

  153. Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. Int J Heat Mass Transf. 2019;138:738–49.

    Article  Google Scholar 

  154. Ghalambaz M, Mehryan SAM, Zahmatkesh I, Chamkha A. Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int J Therm Sci. 2020;157:106503.

    Article  Google Scholar 

  155. Mehryan SAM, Ghalambaz M, Gargari LS, Hajjar A, Sheremet M. Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J Energy Storage. 2020;28:101236.

    Article  Google Scholar 

  156. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids wıth submicron metallic oxide particles. Exp Heat Trans. 1998;11:151–70.

    Article  CAS  Google Scholar 

  157. Teng TP, Hung YH. Estimation and experimental study of the density and specific heat for alumina nanofluid. J Exp Nanosci. 2014;9:707–18.

    Article  CAS  Google Scholar 

  158. Pastoriza-Gallego MJ, Casanova C, Paramo R, Pineiro MM. A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J Appl Phys. 2009;106:123–9.

    Article  CAS  Google Scholar 

  159. Al-Waeli AHA, Chaichan MT, Sopian K, Kazem HA. Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud Therm Eng. 2019;13:100340.

    Article  Google Scholar 

  160. Poongavanam GK, Duraisamy S, Vigneswaran VS, Ramalingam V. Review on the electrical conductivity of nanofluids: Recent developments. Materials Today: Proceedings, ISSN 2020;2214–7853.

  161. Ramalingam G, Vignesh R, Ragupathi C, Magdalane CM, Kaviyarasu K, Kennedy J. Electrical and chemical stability of CuS nanofluids for conductivity of water soluble based nanocomposites. Surf Interf. 2020;19:100475.

    Article  CAS  Google Scholar 

  162. Giwa SO, Sharifpur M, Meyer JP, Wongwises S, Mahian O. Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids with various particle mass ratios. J Therm Anal Calorim. 2021;143:1037–50.

    Article  CAS  Google Scholar 

  163. Giwa SO, Sharifpur M, Ahmadi MH, Sohel Murshed SM, Meyer JP. Experimental investigation on stability, viscosity, and electrical conductivity of water-based hybrid nanofluid of MWCNT-Fe2O3. Nanomaterials. 2021;11:136.

    Article  CAS  PubMed Central  Google Scholar 

  164. Peng H, Guo W, Li M. Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube. Energy. 2020;192:116564.

    Article  CAS  Google Scholar 

  165. Shoghl SN, Jamali J, Moraveji MK. Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp Fluid Sci. 2016;74:339–46.

    Article  CAS  Google Scholar 

  166. Asirvatham LG, Balakrishnan R, Lal DM, Wongwises S. Convective heat transfer of nanofluids with correlations. Particuology. 2011;9:626–31.

    Article  CAS  Google Scholar 

  167. Mikkola V, Puupponen S, Granbohm H, Saari K, Ala-Nissila T, Seppälä A. Influence of particle properties on convective heat transfer of nanofluids. Int J Therm Sci. 2018;124:187–95.

    Article  CAS  Google Scholar 

  168. Khoshvaght-Aliabadi M. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid. Heat Mass Transf. 2016;52:819–28.

    Article  CAS  Google Scholar 

  169. Khoshvaght-Aliabadi M, Hassani SM, Mazloumi SH. Comparison of hydrothermal performance between plate fins and plate-pin fins subject to nanofluid-cooled corrugated miniature heat sinks. Microelectron Reliab. 2017;70:84–96.

    Article  CAS  Google Scholar 

  170. Sarafraz MM, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;263:382e9.

    Article  CAS  Google Scholar 

  171. Akcay S, Akdağ Ü, Hacıhafızoğu O, Demiral D. The effect on heat transfer of pulsating flow of the Al2O3-water nanofluid passing through the tube bundle. DÜMF Mühendislik Dergisi. 2019;10:621–31.

    Article  Google Scholar 

  172. Sarafraz MM, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermohydraulic performance of microchannel. Int Commun Heat Mass Transf. 2018;94:39–46.

    Article  CAS  Google Scholar 

  173. Bahiraei M, Mazaheri N, Aliee F, Safaei MR. Thermo-hydraulic performance of a biological nanofluid containing graphene nanoplatelets within a tube enhanced with rotating twisted tape. Powder Technol. 2019;355:278–88.

    Article  CAS  Google Scholar 

  174. Ajeel RK, Salim WSIW, Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels. Adv Powder Technol. 2019;30:2262–75.

    Article  CAS  Google Scholar 

  175. Qi C, Yang L, Chen T, Rao Z. Experimental study on thermo-hydraulic performances of TiO2-H2O nanofluids in a horizontal elliptical tube. Appl Therm Eng. 2018;129:1315–24.

    Article  CAS  Google Scholar 

  176. Qi C, Liu M, Luo T, Pan Y, Rao Z. Effects of twisted tape structures on thermo-hydraulic performances of nanofluids in a triangular tube. Int J Heat Mass Transf. 2018;127:146–59.

    Article  CAS  Google Scholar 

  177. Sahoo RR. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020;370:19–28.

    Article  CAS  Google Scholar 

  178. Fan F, Qi C, Tang J, Liu Q, Wang X, Yan Y. A novel thermal efficiency analysis on the thermo-hydraulic performance of nanofluids in an improved heat exchange system under adjustable magnetic field. Appl Ther Eng. 2020;79:115688.

    Article  CAS  Google Scholar 

  179. Ajeel RK, Zulkifli R, Sopian K, Fayyadh SN, Fazlizan A, Ibrahim A. Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method. Powder Technol, 2021;385.

  180. Mei S, Qi C, Liu M, Fan F, Liang L. Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube. Int J Heat Mass Transf. 2019;134:707–21.

    Article  CAS  Google Scholar 

  181. Al-Salem O. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Energy Rev. 2012;16:911–20.

    Article  CAS  Google Scholar 

  182. Bejan A. Second law analysis in heat transfer. Energy. 2018;5:720–32.

    Article  Google Scholar 

  183. Bejan A. Entropy Generation through Heat and Fluid Flow. New York: Wiley; 2018.

    Google Scholar 

  184. Kumar K, Kumar R, Bharj RS. Entropy generation analysis due to heat transfer and nanofluid flow through microchannels: a review. Int J Exergy. 2020;31:149–86.

    Article  Google Scholar 

  185. Li P, Xie Y, Zhang D, Xie G. Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices. Entropy. 2016;18:134.

    Article  CAS  Google Scholar 

  186. Xie Y, Zheng L, Zhang D, Xie G. Entropy generation and heat transfer performances of Al2O3–water nanofluid transitional flow in rectangular channels with dimples and protrusions. Entropy. 2016;18:148.

    Article  CAS  Google Scholar 

  187. Qasim M, Khan ZH, Khan I, Al-Mdallal QM. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy. 2017;19:490.

    Article  CAS  Google Scholar 

  188. Kolsi L, Mahian O, Öztop HF, Aich W, Borjini MN, Abu-Hamdeh N, Aissia HB. 3D buoyancy-induced flow and entropy generation of nanofluid-filled open cavities having adiabaticdiamond shaped obstacles. Entropy. 2016;18:232.

    Article  CAS  Google Scholar 

  189. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.

    Article  CAS  Google Scholar 

  190. Bizhaem HK, Abbassi A. Numerical study on heat transfer and entropy generation of developing laminar nanofluid flow in helical tube using two-phase mixture model. Adv Powder Technol. 2017;28:2110–25.

    Article  CAS  Google Scholar 

  191. Huminic G, Huminic A. The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. Int J Heat Mass Transf. 2018;119:813–27.

    Article  CAS  Google Scholar 

  192. Bahiraei M, Jamshidmofid M, Amani M, Barzegarian R. Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technol. 2018;336:298–310.

    Article  CAS  Google Scholar 

  193. Manay E, Akyürek EF, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Res Phys. 2018;9:615–24.

    Google Scholar 

  194. Mukherjee S, Mishra PC, Chaudhuri P. Enhancing thermo-economic performance of TiO2-water nanofluids: an experimental investigation. JOM. 2020. https://doi.org/10.1007/s11837-020-04336-9.

    Article  Google Scholar 

  195. Kianifar A, Mahian O, Ahmet ZS, Waqar AK, Somchai W. Costs due to entropy generation in a vertical annulus using nanofluids and different thermophysical models. Curr Nanosci. 2014;10:743.

    Article  CAS  Google Scholar 

  196. Alashka A, Gadalla M. Thermo-economic analysis of an integrated solar power generation system using nanofluids. Appl Energy. 2017;191:469–91.

    Article  CAS  Google Scholar 

  197. Prajapati PP, Patel VP. Thermo-economic optimization of a nanofluid based organic Rankine cycle: a multi-objective study and analysis. Ther Sci Eng Prog. 2020;17:100381.

    Article  Google Scholar 

  198. Mukherjee S, Purna CM, Paritosh C. Thermo-economic performance analysis of Al2O3-water nanofluids - an experimental investigation. J Mol Liq, 2020;299.

  199. Hajabdollahi H, Masoumpour B, Ataeizadeh M. Thermoeconomic analysis and multiobjective optimization of tubular heat exchanger network using different shapes of nanoparticles. Heat Transfer. 2021;50:56–80.

    Article  Google Scholar 

  200. Chahregh SH, Dinarvand S. TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system. Int J Num Methods H. 2020;30(11):4775–96.

    Article  Google Scholar 

  201. Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnol Sci Appl. 2020;13:47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mannu R, Karthikeyan V, Velu N, Arumugam C, Roy VAL, Gopalan A-I, Saianand G, Sonar P, Lee K-P, Kim W-J, Lee D-E, Kannan V. Polyethylene glycol coated magnetic nanoparticles: hybrid nanofluid formulation, properties and drug delivery prospects. Nanomaterials. 2021;11(2):440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wei Y, Huaqing X. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:17.

    CAS  Google Scholar 

  204. Ullah MR, Ishtiaq TM, Mamun MAH. Heat transfer enhancement in shell and tube heat exchanger by using Al2O3/ water and TiO2/ water nanofluid. AIP Conf Proc. 2019;2121:2019.

    Google Scholar 

  205. Khanlari A. The effect of utilizing Al2O3-SiO2/Deionized water hybrid nanofluid in A tube-type heat exchanger. Heat Transf Res. 2020;51(11):991–1005.

    Article  Google Scholar 

  206. Variyenli Hİ. Experimental and numerical investigation of heat transfer enhancement in a plate heat exchanger using a fly ash nanofluid. Heat Transf Res. 2019;50(15):1477–94.

    Article  Google Scholar 

  207. Said Z, Rahman SMA, El Assad MH, Alami AH. Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17.

    Google Scholar 

  208. Khanlari A, Sözen A, Variyenli HI, Gürü M. Comparison between heat transfer characteristics of TiO2/deionized water and kaolin/deionized water nanofluids in the plate heat exchanger. Heat Transf Res. 2019;50(5):435–50.

    Article  Google Scholar 

  209. Leye M, Amoo R, Fagbenle L, Advanced fluids- a review of nanofluid transport and its applications, Editor(s): R.O. Fagbenle, O.M. Amoo, S. Aliu, A. Falana, Applications of Heat, Mass and Fluid Boundary Layers, Woodhead Publishing, 2020: 281–382.

  210. Kumar V, Sahoo RR. Exergy and energy analysis of a wavy fin radiator with variously shaped nanofluids as coolants. Heat Transf Asian Res. 2019;48(6):2174–92.

    Article  Google Scholar 

  211. Kole M, Dey TK. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D. 2010;43(31):315501.

    Article  CAS  Google Scholar 

  212. Tzeng SC, Lin CW, Huang KD. Heat transfer enhancement of nanofluids in rotary blade coupling of fourwheel- drive vehicles. Acta Mech. 2005;179(1–2):11–23.

    Article  Google Scholar 

  213. Al Rafi A, Haque R, Sikandar F, Chowdhury NA. Experimental analysis of heat transfer with CuO, Al2O3/water-ethylene glycol nanofluids in automobile radiator. AIP Conf Proc. 2019; 2121.

  214. Ma HB, Wilson C, Borgmeyer B. Effect of nanofluid on the heat transport capability in an oscillating heat pipe. App Phy Lets. 2006;88(14):3.

    Google Scholar 

  215. Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007;27(8–9):1501–6.

    Article  CAS  Google Scholar 

  216. Joy RC, Rajan AA, Solomon AB, Ramachandran K, Pillai BC. Experimental investigation on the critical heat flux of Cu-water, Al-water nanofluids for precise cooling of electronic systems. IOP Conf Ser Mater Sci Eng. 2019;561:1.

    Google Scholar 

  217. Vishnuprasad S, Haribabu K, Perarasu V. Experimental study on the convective heat transfer performance and pressure drop of functionalized graphene nanofluids in electronics cooling system. Heat Mass Transf. 2019;55(8):2221–34.

    Article  CAS  Google Scholar 

  218. Aslfattahi N, Loni R, Bellos E, Najafi G, Kadirgama K, Harun WSW, Saidur R. Efficiency enhancement of a solar dish collector operating with a novel soybean oil-based-MXene nanofluid and different cavity receivers. J Clean Prod. 2021;317:128430.

    Article  CAS  Google Scholar 

  219. Ünvar S, Menlik T, Sözen A, Ali HM. Improvement of heat pipe solar collector thermal efficiency using Al2O3/Water and TiO2/Water nanofluids. Int J Photoenergy. 2021;2021:13.

    Article  CAS  Google Scholar 

  220. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    Article  CAS  Google Scholar 

  221. Mercan M, Yurddaş A. Numerical analysis of evacuated tube solar collectors using nanofluids. Sol Energy. 2019;191:167–79.

    Article  CAS  Google Scholar 

  222. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  223. Dehaj MS, Mohiabadi MZ. Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol Energy Mater Sol Cells. 2019;191:91–9.

    Article  CAS  Google Scholar 

  224. Dehaj MS, Mohiabadi MZ. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector. J Therm Anal Calorim. 2019;137:2061–72.

    Article  CAS  Google Scholar 

  225. Rangabashiam D, Ramachandran S, Sekar M. Effect of Al2O3 and MgO nanofluids in heat pipe solar collector for improved efficiency. Appl Nanosci. 2021. https://doi.org/10.1007/s13204-021-01865-w.

    Article  Google Scholar 

  226. Elsaid K, Olabi AG, Wilberforce T, Abdelkareem MA, Sayed ET. Environmental impacts of nanofluids: a review. Sci Total Environ. 2021;763:144202.

    Article  CAS  PubMed  Google Scholar 

  227. Barberio G, Scalbi S, Buttol P, Masoni P, Righi S. Combining life cycle assessment and qualitative risk assessment: the case study of alumina nanofluid production Sci. Total Environ. 2014;496:122–31.

    Article  CAS  Google Scholar 

  228. Stalin P, Arjunan TV, Matheswaran MM, et al. Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J Therm Anal Calorim. 2020;139:3219–33.

    Article  CAS  Google Scholar 

  229. Sharafeldin MA, Gróf G, Abu-Nada E, Mahian O. Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis. Appl Therm Eng. 2019;162:114205.

    Article  CAS  Google Scholar 

  230. Perry RH, Green DW. Perry’s Chemical Engineers’ Handbook. 7th ed. New York, NY, USA: McGraw-Hill Inc; 1997.

    Google Scholar 

  231. Alghoul MA, Sulaiman MY, Azmi BZ, Wahab MA. Review of materials for solar thermal collectors. Anti Corros Methods Mater. 2005;52:199–206.

    Article  CAS  Google Scholar 

  232. Shackelford JF, Alexander W. CRC Materials Science and Engineering Handbook. 3rd ed. Boca Raton, FL, USA: CRC Press; 2001.

    Google Scholar 

  233. Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007;455:70–4.

    Article  CAS  Google Scholar 

  234. Xuan Y, Li Q, Zhang X, Fujii M. Stochastic thermal transport of nanoparticle suspensions. J Appl Phys. 2006;100:043507.

    Article  CAS  Google Scholar 

  235. Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf Trans ASME. 2007;129:298–307.

    Article  CAS  Google Scholar 

  236. Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53:4607–18.

    Article  CAS  Google Scholar 

  237. Sundar LS, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35.

    Article  CAS  Google Scholar 

  238. Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569–81.

    Article  CAS  PubMed  Google Scholar 

  239. Wessel D. ASHRAE Fundamentals Handbook; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta. USA: GA; 2001.

    Google Scholar 

  240. Sundar SL, Ramana EV, Singh MK, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Trans. 2014;56:86–95.

    Article  CAS  Google Scholar 

  241. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  CAS  Google Scholar 

  242. Esfe MH, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Trans. 2015;66:100–4.

    Article  CAS  Google Scholar 

  243. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39:3885–91.

    Article  CAS  Google Scholar 

  244. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  245. Gürbüz EY, Variyenli Hİ, Sözen A, Khanlari A, Ökten M. Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger. Int J Numer Method H. 2020;3.

  246. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    Article  CAS  Google Scholar 

  247. Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 2012;231:18–20.

    Article  CAS  Google Scholar 

  248. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/ water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  CAS  Google Scholar 

  249. Chopkar M, Kumar S, Bhandari D, Das PK, Manna I. Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater Sci Eng: B. 2017;139:141–8.

    Article  CAS  Google Scholar 

  250. Martin K, Sözen A, Çiftçi E, Ali HM. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. Int J Thermophys. 2020;41:135.

    Article  CAS  Google Scholar 

  251. Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.

    Article  CAS  Google Scholar 

  252. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Trans. 2016;76:41–5.

    Article  CAS  Google Scholar 

  253. Gürbüz EA, Sözen A, Keçebaş A, Özbaş E. Experimental and numerical investigation of diffusion absorption refrigeration system working with ZnOAl2O3 and TiO2 nanoparticles added ammonia/water nanofluid. Exp Heat Transf. 2020. https://doi.org/10.1080/08916152.2020.1838668.

    Article  Google Scholar 

  254. Nine MJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys. 2013;141:636–42.

    Article  CAS  Google Scholar 

  255. Jana S, Khojin AS, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462:45–55.

    Article  CAS  Google Scholar 

  256. Baghbanzadeha M, Rashidib A, Rashtchiana D, Lotfib R, Amrollahib A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  257. Paul G, Philip J, Raj B, Das PK, Manna I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid pre-pared by a twostep process. Int J Heat Mass Transf. 2011;54:3783–8.

    Article  CAS  Google Scholar 

  258. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39:6415–25.

    Article  CAS  Google Scholar 

  259. Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, et al. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53:8445–51.

    Article  CAS  Google Scholar 

  260. Arani AAA, Pourmoghadam F. Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/Ethylene glycol hybrid nanofluid: providing new thermal conductivity correlation. Heat Mass Transf. 2019;55:2329–39.

    Article  CAS  Google Scholar 

  261. Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2-H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy. 2018;118:122–30.

    Article  CAS  Google Scholar 

  262. Esfe MH, Esfandeh S, Afrand AMK, M, . A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 2019;342:998–1007.

    Article  CAS  Google Scholar 

  263. Giwa SO, Sharifpur MJP, Meyer SW, Mahian O. Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10041-1.

    Article  Google Scholar 

  264. Giwa SO, Momin M, Nwaokocha CN, Sharifpur M, Meyer JP. Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO nanofluid: an experimental approach. J Therm Anal Calorim. 2021;143:1063-1079.

    Article  CAS  Google Scholar 

  265. Mondragon R, Julia JE, Barba A, Jarque JC. Characterization of silica-water nanofluids dispersed with an ultrasound probe: a study of their physical properties and stability. Powder Technol. 2012;224:138–46.

    Article  CAS  Google Scholar 

  266. Chakraborty S, Sarkar I, Ashok A, Sengupta I, Pal SK, Chakraborty S. Thermophysical properties of Cu-Zn-Al LDH nanofluid and its application in spray cooling. Appl Therm Eng. 2018;141:339–51.

    Article  CAS  Google Scholar 

  267. Sandhu HG, Dasaroju M, Singh. Experimental study on stability of different nanofluids by using different nanoparticles and basefluids. 4th Thermal and Fluids Engineering Conference. 2019;27991.

  268. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123:1399–409.

    Article  CAS  Google Scholar 

  269. Srinivas VCVKNSN, Moorthy VD, Manikanta PV, Satish V. Nanofluids with CNTs for automotive applications. Heat Mass Transf. 2016;52:701–12.

    Article  CAS  Google Scholar 

  270. Hwang Y, Lee JK, Jeong YM, Cheong SI, Ahn YC, Kim SH. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008;186:145–53.

    Article  CAS  Google Scholar 

  271. Mostafizur RM, Aziz ARA, Saidur R, Bhuiyan MHU. Investigation on stability and viscosity of SiO2–CH3OH (methanol) nanofluids. Int Commun Heat Mass Trans. 2016;72:16–22.

    Article  CAS  Google Scholar 

  272. Ghadimi A, Metselaar IH. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of Titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9.

    Article  CAS  Google Scholar 

  273. Seob H, Kim F, Yilmaz P, Dharmaiah D, Lee J, Lee TH, Hong SJ. Characterization of Cu and Ni nano-fluids synthesized by pulsed wire evaporation method. Arch Metall Mater. 2017;62:999–1004.

    Article  CAS  Google Scholar 

  274. Khairul MA, Shah K, Doroodchi E, Azizian R, Moghtaderi B. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int J Heat Mass Transf. 2016;98:778–87.

    Article  CAS  Google Scholar 

  275. Cacua K, Ordoñez F, Zapata C, Herrera B, Pabón E. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Coll Surf A Physicochem Eng Asp. 2019;583:123960.

    Article  CAS  Google Scholar 

  276. Choudhary R, Khurana D, Kumar A, Subudhi S. Stability analysis of Al2O3/water nanofluids. J Exp Nanosci. 2017;12:140–51.

    Article  CAS  Google Scholar 

  277. Song YY, Badeshi HKH, Suh DW. Stability of stainless-steel nanoparticle and water mixtures. Powder Technol. 2015;272:34–44.

    Article  CAS  Google Scholar 

  278. Chakraborty S, SenguptaI SI, Pal SK, Chakraborty S. Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl Clay Sci. 2019;168:43–55.

    Article  CAS  Google Scholar 

  279. Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes. J Coll Interface Sci. 2003;260:89–94.

    Article  CAS  Google Scholar 

  280. Bruggeman DAG. Berechnung verschiedener physikalischer konstanten von heterogenen Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkorper aus Isotropen Substanzen. Ann Phys (Leipz). 1935;24:636–79.

    Article  CAS  Google Scholar 

  281. Lu SY, Lin HC. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J Appl Phys. 1966;79:6761–9.

    Article  Google Scholar 

  282. Rea U, Mckrell T, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. IJHMT. 2009;52:2042–8.

    Article  CAS  Google Scholar 

  283. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys. 2005;65:863–9.

    Article  CAS  Google Scholar 

  284. Meyer JP, Adio SA, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transfer Eng. 2016;37:387–421.

    Article  CAS  Google Scholar 

  285. Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;19:289–306.

    Article  CAS  Google Scholar 

  286. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  287. Bruijn H. The viscosity of suspensions of spherical particles. (the fundamental η-C and ϕ relations). Recueil des Travaux Chimiques des Pays- Bas. 1942;61:863–74.

    Article  Google Scholar 

  288. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  289. Wang X, Xu Choi SUS. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  290. Dávalos-Orozco LA, Del Castillo LF. Hydrodynamic behavior of suspensions of polar particles. Encyclopedia Surf Coll Sci. 2003. https://doi.org/10.1081/E-ESCS.

    Article  Google Scholar 

  291. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Angue Mintsa H, Maré T, Mintsa HA. Viscosity data for Al2O3–water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47:103–11.

    Article  CAS  Google Scholar 

  292. Abedian BMK. On the effective viscosity of suspensions. Int J Eng Sci. 2010;48:962–5.

    Article  Google Scholar 

  293. Heyhat MMM, Kowsary F, Rashidi AMM, Memenpour MH, Amrollahi A, Momenpour MH. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci. 2013;44:483–9.

    Article  CAS  Google Scholar 

  294. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  295. Sundar LS, Ramana EV, Said Z, Punnaiah V, Chandra Mouli KVV, Sousa ACM. Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using Nanodiamond Nanofluids. Diam Relat Mater. 2020;110:108115.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Yılmaz Aydın.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz Aydın, D., Gürü, M. Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis. J Therm Anal Calorim 147, 7631–7664 (2022). https://doi.org/10.1007/s10973-021-11092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11092-8

Keywords

Navigation