Skip to main content
Log in

Heat transfer performance of water and Nanoencapsulated n-nonadecane based Nanofluids in a double pipe heat exchanger

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The heat transfer and pressure drop characteristics for the flow of water, which is base fluid, and nanoencapsulated n-nonadecane based nanofluids in a double pipe heat exchanger were investigated. The results showed that no improvement in overall heat transfer coefficient was observed for the nanofluids containing 0.42% and 0.84% solid volume ratios with reference to the base fluid, while an improvement of about 10% was obtained for the nanofluids containing 1.68% solid volume ratio. It was found that the friction factors for the nanofluids exhibited a slight increase reference to the base fluid. A performance analysis based on constant pumping power was also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choi SUS (2008) Nanofluids: a new field of scientific research and innovative applications. Heat Transfer Engineering 29:429–431. doi:10.1080/01457630701850778

    Article  Google Scholar 

  2. Wang XQ, Mujumdar AS (2008) A review on Nanofluids - part ii: experiments and applications. Braz J Chem Eng 25:631–648

    Article  Google Scholar 

  3. Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150. doi:10.1016/j.partic.2009.01.007

    Article  Google Scholar 

  4. Yu W, France DM, Timofeeva EV, Singh D, Routbort JL (2012) Comparative review of turbulent heat transfer of nanofluids. Int J Heat Mass Tran 55:5380–5396. doi:10.1016/j.ijheatmasstransfer.2012.06.034

    Article  Google Scholar 

  5. Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523

    Article  Google Scholar 

  6. Öztop HF, Estellé P, Yan W-M, Al-Salem K, Orfi J, Mahian O (2015) A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer 60:37–44. doi:10.1016/j.icheatmasstransfer.2014.11.001

    Article  Google Scholar 

  7. Mohammed HA, Al-aswadi AA, Shuaib NH, Saidur R (2011) Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sust Energ Rev 15:2921–2939. doi:10.1016/j.rser.2011.02.019

    Article  Google Scholar 

  8. Huminic G, Huminic A (2012) Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev 16:5625–5638. doi:10.1016/j.rser.2012.05.023

    Article  MATH  Google Scholar 

  9. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Tran 52:3187–3196. doi:10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  10. Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A, Ekrami-Kakhki M-S (2016) Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim 123:81–89. doi:10.1007/s10973-015-4878-4

    Article  Google Scholar 

  11. Hemmat Esfe M, Saedodin S, Yan W-M, Afrand M, Sina N (2016) Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim 124:455–460. doi:10.1007/s10973-015-5104-0

    Article  Google Scholar 

  12. Jung J-Y, Kim ES, Nam Y, Kang YT (2013) The study on the critical heat flux and pool boiling heat transfer coefficient of binary nanofluids (H2O/LiBr + Al2O3). Int J Refrig 36:1056–1061. doi:10.1016/j.ijrefrig.2012.11.021

    Article  Google Scholar 

  13. Celata GP, D’Annibale F, Mariani A, Saraceno L, D’Amato R, Bubbico R (2013) Heat transfer in water-based SiC and TiO2 Nanofluids. Heat Transfer Engineering 34:1060–1072. doi:10.1080/01457632.2013.763542

    Article  Google Scholar 

  14. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Graphene-based engine oil Nanofluids for Tribological applications. ACS Appl Mater Interfaces 3:4221–4227. doi:10.1021/am200851z

    Article  Google Scholar 

  15. Wong KV, Leon OD (2010) Applications of Nanofluids: current and future. Advances in Mechanical Engineering 2:519659. doi:10.1155/2010/519659

    Article  Google Scholar 

  16. Wang XQ, Mujumdar AS (2008) A review on Nanofluids - part I: theoretical and numerical investigations. Braz J Chem Eng 25:613–630

    Article  Google Scholar 

  17. Azizian R, Doroodchi E, Moghtaderi B (2012) Effect of Nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in Nanofluids. Ind Eng Chem Res 51:1782–1789

    Article  Google Scholar 

  18. Michaelides EE (2013) Transport properties of nanofluids. A critical review Journal of Non-Equilibrium Thermodynamics 38:1–79

    Article  MATH  Google Scholar 

  19. Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6:229

    Article  Google Scholar 

  20. Kakaç S, Pramuanjaroenkij A (2016) Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – a state-of-the-art review. Int J Therm Sci 100:75–97. doi:10.1016/j.ijthermalsci.2015.09.021

    Article  Google Scholar 

  21. Choi ES, Cho YI, Lorsch HG (1994) Forced-convection heat-transfer with phase-change-material slurries - turbulent-flow in a circular tube. Int J Heat Mass Tran 37:207–215

    Google Scholar 

  22. Rao Y, Dammel F, Stephan P, Lin GP (2007) Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf 44:175–186

    Article  Google Scholar 

  23. Wang X, Niu J, Li Y, Wang X, Chen B, Zeng R, Song Q, Zhang Y (2007) Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube. Int J Heat Mass Tran 50:2480–2491. doi:10.1016/j.ijheatmasstransfer.2006.12.024

    Article  MATH  Google Scholar 

  24. Wang X, Niu J, Li Y, Zhang Y, Wang X, Chen B, Zeng R, Song Q (2008) Heat transfer of microencapsulated PCM slurry flow in a circular tube. AICHE J 54:1110–1120. doi:10.1002/aic.11431

    Article  Google Scholar 

  25. Howard JA, Walsh PA (2013) An experimental investigation of heat transfer enhancement mechanisms in microencapsulated phase-change material slurry flows. Heat Transfer Engineering 34:223–234

    Article  Google Scholar 

  26. Barlak S, Sara ON, Karaipekli A, Yapıcı S (2016) Thermal conductivity and viscosity of Nanofluids having Nanoencapsulated phase change material. Nanoscale and Microscale Thermophysical Engineering 20:85–96. doi:10.1080/15567265.2016.1174321

    Article  Google Scholar 

  27. Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Sol Energy Mater Sol Cells 89:297–306. doi:10.1016/j.solmat.2005.01.017

    Article  Google Scholar 

  28. Ramahlingam T, Raghavan VR (2011) The tube side heat transfer coefficient for enhanced double tube by Wilson plot analysis. J Appl Sci 11:1725–1732

    Article  Google Scholar 

  29. Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y (2013) Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci 66:82–90. doi:10.1016/j.ijthermalsci.2012.11.013

    Article  Google Scholar 

  30. Peyghambarzadeh SM, Hashemabadi SH, Naraki M, Vermahmoudi Y (2013) Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl Therm Eng 52:8–16. doi:10.1016/j.applthermaleng.2012.11.013

    Article  Google Scholar 

  31. Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng 104:250–258. doi:10.1115/1.3241818

    Article  Google Scholar 

  32. Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng 30:2685–2692. doi:10.1016/j.applthermaleng.2010.07.019

    Article  Google Scholar 

  33. Salman BH, Mohammed HA, Kherbeet AS (2012) Heat transfer enhancement of nanofluids flow in microtube with constant heat flux. International Communications in Heat and Mass Transfer 39:1195–1204. doi:10.1016/j.icheatmasstransfer.2012.07.005

    Article  Google Scholar 

  34. Chun BH, Kang HU, Kim SH (2008) Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J Chem Eng 25:966–971

    Article  Google Scholar 

  35. Huminic G, Huminic A (2011) Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int J Heat Mass Tran 54:4280–4287. doi:10.1016/j.ijheatmasstransfer.2011.05.017

    Article  MATH  Google Scholar 

  36. Yilmaz M, Comakli O, Yapici S, Sara ON (2005) Performance evaluation criteria for heat exchangers based on first law analysis. Journal of Enhanced Heat Transfer 12:121–157. doi:10.1615/JEnhHeatTransf.v12.i2.10

    Article  Google Scholar 

  37. Yilmaz M, Sara ON, Karsli S (2001) Performance evaluation criteria for heat exchangers based on second law analysis. Exergy, An International Journal 1:278–294. doi:10.1016/S1164-0235(01)00034-6

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported financially by TÜBİTAK-MAG with the project number 113 M133. TEM and SEM analysis were carried out at METU central labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Nuri Şara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doruk, S., Şara, O.N., Karaipekli, A. et al. Heat transfer performance of water and Nanoencapsulated n-nonadecane based Nanofluids in a double pipe heat exchanger. Heat Mass Transfer 53, 3399–3408 (2017). https://doi.org/10.1007/s00231-017-2072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2072-x

Navigation