Skip to main content
Log in

Preparation of ionic liquid multifunctional graphene oxide and its effect on decrease fire hazards of flexible polyurethane foam

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An ionic liquid (IL) functionalized graphene oxide (ILGO) containing phosphorus was prepared by GO and ionic liquid ([BMIM]PF6), whose structure was characterized via XRD, FTIR, TG and EDS. Then combined with flame retardants (ammonium polyphosphate-APP and expandable graphite-EG), ILGO acting as synergistic agent was introduced into flexible polyurethane foam (FPUF) to modify its flame retardancy, which was assessed by UL-94, TG, limiting oxygen index (LOI) test and cone calorimeter test (CCT). The results show that the FPUF composites with 0.05 phr ILGO, 7.5phr EG and 7.5phr APP got a LOI of 29.0% and passed the V-0 rating for UL-94, while that for FPUF/EG/APP composites is only 26.7 and not classified at the same loading. The results of CCT showed that ILGO could reduce heat release, smoke suppression and toxic gas production of the FPUF composites. For the FPUF/EG/APP/ILGO composites, the PHRR, THR and TSP were decreased by 24.6%, 32.6% and 18.5%, respectively, compared with the FPUF/EG/APP/GO composites. TG and morphology of char residue reveals that the IL expedite the formation of dense and continuous charring layer and physical isolating effect of GO, which is the inherent reason for the good flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barlas Y, Yang K, MacDonald AH. Quantum Hall effects in graphene-based two-dimensional electron systems. Nanotechnology. 2012;23:052001.

    Article  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–7.

    Article  CAS  Google Scholar 

  3. Gavgani JN, Adelnia H, Gudarzi MM. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci. 2014;49:243–54.

    Article  CAS  Google Scholar 

  4. Wang Z, Wei P, Qian Y, Liu J. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B Eng. 2014;60:341–9.

    Article  Google Scholar 

  5. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CCM. Preparation of covalently functionized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces. 2010;2:3092–9.

    Article  CAS  Google Scholar 

  6. Liao SH, Liu PL, Hsiao MC, Teng CC, Wang CA, Ger MD, Chiang CL. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res. 2012;51:4573–81.

    Article  CAS  Google Scholar 

  7. Huang Y, Wang X, Jin X, Wang T. Study on the PMMA/GO nanocomposites with good thermal stability prepared by in situ Pickering emulsion polymerization. J Therm Anal Calorim. 2014;117:755–63.

    Article  CAS  Google Scholar 

  8. Kim MJ, Jean IY, Seo JM, Dai L, Baek JB. Graphene phosphonic acid as an efficient flame retardant. ACS Nano. 2014;8:2820–5.

    Article  CAS  Google Scholar 

  9. Chen D, Wu F, He M. Synthesis and characterization of phosphate intercalated graphite oxide. Fullerenes Nanotubes Carbon Nanostruct. 2014;23:6–10.

    Article  CAS  Google Scholar 

  10. Some S, Shackery I, Kim SJ, Jun SC. Phosphorus doped graphene oxide layer as a highly efficient flame retardant. Chemistry-A European Journal. 2015;21:15480–5.

    Article  CAS  Google Scholar 

  11. Yuan B, Song L, Liew KM, Hu Y. Solid acid-reducedgraphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. RSC Adv. 2015;5:41307–16.

    Article  CAS  Google Scholar 

  12. Zhang M, Yan H, Yang X, Liu C. Effect of functionalized graphene oxide with a hyperbranched cyclotriphosphazene polymer on mechanical and thermal properties of cyanate ester composites. RSC Adv. 2014;4:45930–8.

    Article  CAS  Google Scholar 

  13. Hu W, Zhan J, Wang X. Effect of functionalizedgraphene oxide with hyper-branched flame retardant onflammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res. 2014;53:3073–83.

    Article  CAS  Google Scholar 

  14. Qiu S, Hu W, Yu B. Effect of functionalizedgraphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene. Ind Eng Chem Res. 2015;54:3309–19.

    Article  CAS  Google Scholar 

  15. Hu W, Yu B, Jiang SD, Song L, Hu Y, Wang B. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater. 2015;300:58–66.

    Article  CAS  Google Scholar 

  16. Xu JY, Liu J, Li KD, Miao L, Tanemura S. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Sci Technol Adv Mater. 2015;16:025006.

    Article  Google Scholar 

  17. Yuan B, Sheng H, Mu X. Enhanced flame retardancy of polypropylene by melamine-modified grahene oxide. J Mater Sci. 2015;50:5389–401.

    Article  CAS  Google Scholar 

  18. Liu S, Fang Z, Yan H, Wang H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016;6:5288–95.

    Article  CAS  Google Scholar 

  19. Yu B, Wang X, Qian X. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014;4:31782.

    Article  CAS  Google Scholar 

  20. Li KY, Kuan CF, Kuan HC. Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys. 2014;146:354–62.

    Article  CAS  Google Scholar 

  21. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B. Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew Chem. 2008;120:1143–5.

    Article  Google Scholar 

  22. Steinrueck HP, Wasserscheid P. Ionic liquids in catalysis. Catal Lett. 2015;145:380–97.

    Article  CAS  Google Scholar 

  23. Rogers RD, Seddon KR. Ionic Liquids-Solvents of the Future. Science. 2003;302:792–3.

    Article  Google Scholar 

  24. Kubisa P, Prog. Application of ionic liquids as solvents for polymerization processes. Polym Sci. 2004;29:3–12.

    CAS  Google Scholar 

  25. Chen S, Li J, Zhu Y, Guo Z, Su SJ. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid Mater. Journal of Materials Chemistry A. 2013;1:15242–6.

    Article  CAS  Google Scholar 

  26. Xiao F, Wu K, Luo F, Guo Y, Zhang S, Du X, Lu M. An efficient phosphonate-based ionic liquid on flame retardancy and mechanical property of epoxy resin. J Mater Sci. 2017;52:13992–4003.

    Article  CAS  Google Scholar 

  27. Yang X, Ge N, Hu L, Gui H, Wang Z, Ding Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym Adv Technol. 2013;24:568–75.

    Article  CAS  Google Scholar 

  28. Zhang JH, Kong QH, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376–86.

    Article  CAS  Google Scholar 

  29. Kong QH, Sun YL, Zhang CJ, Guan HM, Zhang JH, Wang DY, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748.

    Article  CAS  Google Scholar 

  30. Yi DY, Yang RJ, Charles AW. Full scale nanocomposites: Clay in fire retardant and polymer. Polym Degrad Stab. 2014;105:31–41.

    Article  CAS  Google Scholar 

  31. Wu JM, Yan H, Wang JF, Wu YG, Zhou CS. Flame retardant polyurethane elastomer nanocomposite applied to coal mines as air-leak sealant. J Appl Polym Sci. 2013;129:3390–5.

    Article  CAS  Google Scholar 

  32. Tang XZ, Li WJ, Yu ZZ, Rafiee MA. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4, 6-didodecylamino-1, 3, 5-triazine. Carbon. 2011;49:1258–65.

    Article  CAS  Google Scholar 

  33. Feng Y, Hu J, Xue Y, He C, Zhou X, Xie X, Mai YW. Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. Journal of Materials Chemistry A. 2017;5:13544–56.

    Article  CAS  Google Scholar 

  34. Gao M, Wang Y, Chen X, Wang H. A mussel-inspired intumescent flame-retardant unsaturated polyester resin system. J Therm Anal Calorim. 2019;138:1097–106.

    Article  CAS  Google Scholar 

  35. Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.

    Article  CAS  Google Scholar 

  36. Pitts WM. Role of two stage pyrolysis in fire growth on flexible polyurethane foam slabs. Fire Mater. 2014;38:323–38.

    Article  CAS  Google Scholar 

  37. Chen XL, Jiao CM, Li SX, Hu Y. Preparation and properties of a single molecule intumescent flame retardant. Fire Safety J. 2013;58:208–12.

    Article  CAS  Google Scholar 

  38. Park WH, Yoon KB. Optimization of pyrolysis properties using TGA and cone calorimeter test. J Therm Sci. 2013;22:168–73.

    Article  CAS  Google Scholar 

  39. Jiao C, Wang H, Chen X, Tang G. Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]. J Therm Anal Calorim. 2019;135:3141–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Open Project Program from Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers (Grant No. BTBUFR21-3), Beijing Technology and Business University, China)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Gao or Xiaoqian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, T., Chen, X. et al. Preparation of ionic liquid multifunctional graphene oxide and its effect on decrease fire hazards of flexible polyurethane foam. J Therm Anal Calorim 147, 7289–7297 (2022). https://doi.org/10.1007/s10973-021-11049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11049-x

Keywords

Navigation