Skip to main content
Log in

Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article mainly studies the flame retardant and thermal degradation properties of thermoplastic polyurethane (TPU) composites based on HGM@[EOOEMIm][BF4], prepared by modifying hollow glass microsphere (HGM) with ionic liquid [EOOEMIm][BF4]. The physical and chemical characteristic of HGM@[EOOEMIm][BF4] was tested by X-ray photoelectron spectroscopy and scanning electron microscope–energy-dispersive spectrometer, respectively. And then the flame retardant and thermal degradation characteristics of all TPU composites were tested using smoke density test (SDT), cone calorimeter test (CCT) and thermogravimetric/fourier transform infrared spectroscopy, etc. The SDT results showed that HGM@[EOOEMIm][BF4] can significantly decrease the amount of smoke production. The CCT revealed that HGM@[EOOEMIm][BF4] can greatly enhance the flame retardant of TPU. The peak heat release rate value decreased from 1224.0 kW m−2 (TPU0) to 498.5 kW m−2 (TPU/HB2). The TG test showed that HGM@[EOOEMIm][BF4] can improve the thermal stability of TPU composites and promote the char formation in the combustion process of TPU. All results confirmed that HGM@[EOOEMIm][BF4] can make a great influence on the combustion and degradation of TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tabuani D, Belluccia F, Camino G. Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stab. 2012;97:2594–601.

    Article  CAS  Google Scholar 

  2. Chen X, Ma C, Jiao C. Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab. 2016;129:275–85.

    Article  CAS  Google Scholar 

  3. Pinto U, Visconte L, Gallo J, Nunes R. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym Degrad Stab. 2000;69:257–60.

    Article  CAS  Google Scholar 

  4. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105:86–95.

    Article  CAS  Google Scholar 

  5. Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.

    Article  CAS  Google Scholar 

  6. Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120:1173–81.

    Article  CAS  Google Scholar 

  7. Liu L, Hu J, Zhuo J, Jiao C, Chen X, Li S. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.

    Article  CAS  Google Scholar 

  8. Geleil A, Hall M, Shelby J. Hollow glass microspheres for use in radiation shielding. J Non-Cryst Solids. 2006;352:620–5.

    Article  CAS  Google Scholar 

  9. Hu Y, Mei R, An Z, Zhang J. Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci Technol. 2013;79:64–9.

    Article  CAS  Google Scholar 

  10. Brow R, Schmitt M. A survey of energy and environmental applications of glass. J Eur Ceram Soc. 2009;29:1193–201.

    Article  CAS  Google Scholar 

  11. Verweij H, With G, Veeneman D. Hollow glass microsphere composites: preparation and properties. J Mater Sci. 1985;20:1069–78.

    Article  CAS  Google Scholar 

  12. Li B, Yuan J, An Z, Zhang J. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance. Mater Lett. 2011;65:1992–4.

    Article  CAS  Google Scholar 

  13. Liang J. Tensile and impact properties of hollow glass bead-filled PVC composites. Macromol Mater Eng. 2002;287:588–91.

    Article  CAS  Google Scholar 

  14. Kim H, Khamis M. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos A. 2000;32:1311–7.

    Article  Google Scholar 

  15. Chen X, Jiang Y, Jiao C. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.

    Article  CAS  Google Scholar 

  16. Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Ge N, Hu L, Gui H, Wang Z, Ding Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym Adv Technol. 2013;24:568–75.

    Article  CAS  Google Scholar 

  18. Chen S, Li J, Zhu Y, Guo Z, Su S. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. J Mater Chem A. 2013;1:15242–6.

    Article  CAS  Google Scholar 

  19. He Y, Zhang Q, Zhan X, Cheng D, Chen F. Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel–Crafts reaction. Catal Today. 2016;276:112–20.

    Article  CAS  Google Scholar 

  20. Ran S, Guo Z, Han L, Fang Z. Effect of Friedel–Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int. 2014;63:1835–41.

    Article  CAS  Google Scholar 

  21. Ge H, Tang G, Hu W, Wang B, Pan Y, Song L, Hu Y. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater. 2015;294:186–94.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Li M, Zhuo J, Ma C, Jiao C. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J Therm Anal Calorim. 2015;123:439–48.

    Article  CAS  Google Scholar 

  23. Fang S, Hu Y, Song L. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2008;43:1057–62.

    Article  CAS  Google Scholar 

  24. Jiao C, Zhao L, Chen X. Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane. J Therm Anal Calorim. 2017;12:2101–12.

    Article  CAS  Google Scholar 

  25. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew K. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Interfaces. 2015;7:101–11.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou K, Tang G, Jiang S, Gui Z, Hu Y. Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. RSC Adv. 2016;6:37672–80.

    Article  CAS  Google Scholar 

  27. Aslzadeh M, Abdouss M. Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. J Appl Polym Sci. 2013;127:1683–90.

    Article  CAS  Google Scholar 

  28. Tang C, Yan H, Li S. Effects of novel polyhedral oligomeric silsesquioxane containing hydroxyl group and epoxy group on the dicyclopentadiene bisphenol dicyanate ester composites. Polym Test. 2007;59:316–27.

    Article  CAS  Google Scholar 

  29. Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.

    Article  CAS  Google Scholar 

  30. Fang G, Li H, Chen Z, Liu X. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. J Hazard Mater. 2010;181:1004–9.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2008;82:170–7.

    Article  CAS  Google Scholar 

  32. Chen X, Ma C, Jiao C. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;126:633–42.

    Article  CAS  Google Scholar 

  33. Li B, Lv W, Zhang Q, Wang T, Ma L. Pyrolysis and catalytic pyrolysis of industrial lignins by TG–FTIR: kinetics and products. J Anal Appl Pyrolysis. 2014;108:295–300.

    Article  CAS  Google Scholar 

  34. Chen X, Huo L, Jiao C, Li S. TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis. 2013;100:186–91.

    Article  CAS  Google Scholar 

  35. Xu T, Huang X. A TG–FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J Anal Appl Pyrolysis. 2010;87:217–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51776101, No.51206084), the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011), the Natural Science Foundation of Shandong Province (ZR2017MB016), and the Project of the State Administration of Work Safety (shandong-0039-2017AQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Wang, H., Chen, X. et al. Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]. J Therm Anal Calorim 135, 3141–3152 (2019). https://doi.org/10.1007/s10973-018-7505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7505-3

Keywords

Navigation