Skip to main content
Log in

Flow and thermal study of MHD Casson fluid past a moving stretching porous wedge

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research provides the analysis of an analytical method named Homotopy analysis method which is applied to examine the series solutions/results on the thermal boundary layer flow over an extend-ing wedge. The wedge is considered to be absorptive with the existence of Ohmic heating and thermal radiation. The problem is non-dimensionalized by implementing similarity variables. Finally and more generally some figures are sketched to demonstrate the accuracy of the applied method and pertinent parameters such as MHD, Prandtl number, suction/injection C parameter, mixed convective parameter, Eckert Ec number and radiation parameter are presented. An attractive chance is attained when our achieved calculations are compared with already existing results in a limiting case; hence, dependable outcomes are being reflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(\Omega \) :

Wedge angle parameter

T w :

Temperature of the wall

\(T_{\infty }\) :

Temperature of free stream

Pr:

Prandtl number

\(\mu \) :

Fluid dynamic viscosity (Pas)

\(\upsilon \) :

Fluid kinematic viscosity

g :

Gravitational acceleration

Nr :

Radiation parameter

\(\beta \) :

Thermal expansion coefficient

k :

Thermal conductivity of the fluid (W m−1 K−1)

\(\sigma \) :

Electrical conductivity of the fluid,

\(\rho \) :

Density of fluid (kg m−3)

\(B_{0}\) :

Magnetic field

C :

Mass Transfer

C p :

Specific heat (J kg−1 K−1)

E c :

Eckert number

\(\updelta \) :

Casson fluid parameter

U :

Free stream velocity

\(\theta \) :

Dimensionless temperature

M :

MHD

Gr:

Grashof number

Re:

Reynolds number

\(\sigma ^{*}\) :

Stefan-Boltzman constant

\(k^{*}\) :

Spectral mean absorption Coefficient

\(\lambda \) :

Mixed convection parameter

References

  1. Agrawal P, Dadheech PK, Jat RN, Bohra M, Nisar KS, Khan I. Lie similarity analysis of MHD flow past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. J Mater Res Technol. 2020;9(5):10045–53. https://doi.org/10.1016/j.jmrt.2020.07.023.

    Article  Google Scholar 

  2. Irfan M, Farooq MA. Thermophoretic MHD free stream flow with variable internal heat generation/absorption and variable liquid characteristics in a permeable medium over a radiative exponentially stretching sheet. J Mater Res Technol. 2020;9(3):4855–66. https://doi.org/10.1016/j.jmrt.2020.03.005.

    Article  Google Scholar 

  3. Khan U, Zaib A, Khan I, Nisar KS. Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual Solutions. J Mater Res Technol. 2020;9(1):188–99. https://doi.org/10.1016/j.jmrt.2019.10.044.

    Article  CAS  Google Scholar 

  4. Akgül A, Siddique I. Analysis of MHD Couette flow by fractal-fractional differential operators. Chaos Solitons Fractals. 2021;1(146):110893. https://doi.org/10.1016/j.chaos.2021.110893.

    Article  Google Scholar 

  5. Ikram MD, Imran MA, Chu YM, Akgul A. MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles. Comb Chem High Throughput Screen. 2021. https://doi.org/10.2174/1386207324666210412122544.

    Article  PubMed  Google Scholar 

  6. Siddique I, Akgul A. Analysis of MHD generalized first problem of Stokes in view of local and non-local fractal fractional differential operators. Chaos Solitons Fractals. 2021;140:110161. https://doi.org/10.1016/j.chaos.2020.110161.

    Article  Google Scholar 

  7. Asjad MI, Ikram MD, Akgul A. Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator. Phys Scr. 2020;95(11):115209.

    Article  CAS  Google Scholar 

  8. Hashemi MS, Akgul A. On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods. Eng Comput. 2019;29:1–2. https://doi.org/10.1007/s00366-019-00876-0.

    Article  Google Scholar 

  9. Watanabe T, Funazaki K, Taniguchi H. Theoretical analysis on mixed convection boundary layer flow over a wedge with uniform suction or injection. Acta Mech. 1994;105(1):133–41. https://doi.org/10.1007/BF01183947.

    Article  Google Scholar 

  10. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;1(107):778–91. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074.

    Article  CAS  Google Scholar 

  11. Menni Y, Azzi A, Chamkha AJ. A review of solar energy collectors: models and applications. J Appl Comput Mech. 2018;4(4):375–401. https://doi.org/10.22055/JACM.2018.25686.1286.

    Article  Google Scholar 

  12. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J Therm Anal Calorim. 2019;135(4):1951–76. https://doi.org/10.1007/s10973-018-7268-x.

    Article  CAS  Google Scholar 

  13. Sakhri N, Menni Y, Chamkha A, Salmi M, Ameur H. Earth to air heat exchanger and its applications in arid regions an updated review. Tecnica Italiana Ital J Eng Sci. 2020;64:83–90.

    Article  Google Scholar 

  14. Menni Y, Chamkha AJ, Ameur H. Advances of nanofluids in heat exchangers: a review. Heat Transf. 2020;49(8):4321–49. https://doi.org/10.1002/htj.21829.

    Article  Google Scholar 

  15. Ahmad I, Ahmad H, Inc M, Yao SW, Almohsen B. Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Thermal Sci. 2020;24(Suppl. 1):95–105. https://doi.org/10.2298/TSCI20S1095A.

    Article  Google Scholar 

  16. Vargas JV, Laursen TA, Bejan A. Nonsimilar solutions for mixed convection on a wedge embedded in a porous medium. Int J Heat Fluid Flow. 1995;16(3):211–6. https://doi.org/10.1016/0142-727X(95)97182-R.

    Article  CAS  Google Scholar 

  17. Deswita L, Nazar R, Ishak A, Ahmad R, Pop I. Mixed convection boundary layer flow past a wedge with permeable walls. Heat Mass Transf. 2010;46(8):1013–8. https://doi.org/10.1007/s00231-010-0646-y.

    Article  Google Scholar 

  18. Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Heat and nanofluid transfer in baffled channels of different outlet models Heat and nanofluid transfer in baffled channels of different outlet models. Math Model Eng Probl. 2019;6(1):21–8. https://doi.org/10.18280/mmep.060103.

    Article  Google Scholar 

  19. Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. Math Model Eng Probl. 2019;6(1):52–60. https://doi.org/10.18280/mmep.060107.

    Article  Google Scholar 

  20. Menni Y, Chamkha AJ, Ghazvini M, Ahmadi MH, Ameur H, Issakhov A, Inc M. Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numer Heat Transf Part A Appl. 2020;4:1–41. https://doi.org/10.1080/10407782.2020.1842846.

    Article  CAS  Google Scholar 

  21. Ghalib MM, Zafar AA, Farman M, Akgül A, Ahmad MO, Ahmad A. Unsteady MHD flow of Maxwell fluid with Caputo-Fabrizio non-integer derivative model having slip/non-slip fluid flow and Newtonian heating at the boundary. Indian J Phys. 2021;3:1. https://doi.org/10.1007/s12648-020-01937-7.

    Article  CAS  Google Scholar 

  22. Mehmood UO, Mustapha N, Shafie S. Nonlinear peristaltic flow of Walter’s B fluid in an asymmetric channel with heat transfer and chemical reactions. Thermal Sci. 2014;18(4):1095–107. https://doi.org/10.2298/TSCI110921096M.

    Article  Google Scholar 

  23. Hayat T, Khan SA, Alsaedi A. Simulation and modeling of entropy optimized MHD flow of second grade fluid with dissipation effect. J Mater Res Technol. 2020;9(5):11993–2006. https://doi.org/10.1016/j.jmrt.2020.07.067.

    Article  Google Scholar 

  24. Danish GA, Imran M, Tahir M, Waqas H, Asjad MI, Akgul A, Baleanu D. Effects of non-linear thermal radiation and chemical reaction on time dependent flow of Williamson nanofluid with combine electrical MHD and activation energy. J Appl Comput Mech. 2020. https://doi.org/10.22055/JACM.2020.35122.2568.

    Article  Google Scholar 

  25. Khan M, Sardar H. Heat generation/absorption and thermal radiation impacts on three-dimensional flow of Carreau fluid with convective heat transfer. J Mol Liq. 2018;15(272):474–80. https://doi.org/10.1016/j.molliq.2018.08.088.

    Article  CAS  Google Scholar 

  26. Shah Z, Shutaywi M, Dawar A, Kumam P, Thounthong P, Islam S. Impact of Cattaneo-Christov heat flux on non-isothermal convective micropolar fluid flow in a hall MHD generator system. J Mater Res Technol. 2020;9(3):5452–62. https://doi.org/10.1016/j.jmrt.2020.03.071.

    Article  Google Scholar 

  27. Khan I, Ali F, Shafie S. Exact Solutions for Unsteady Magnetohydrodynamic oscillatory flow of a maxwell fluid in a porous medium. Zeitschrift fur Naturforschung A. 2013;68(10–11):635–45. https://doi.org/10.5560/zna.2013-0040.

    Article  CAS  Google Scholar 

  28. Nandkeolyar R. A numerical treatment of unsteady three-dimensional hydromagnetic flow of a Casson fluid with Hall and radiation effects. Results Phys. 2018;1(11):966–74. https://doi.org/10.1016/j.rinp.2018.10.041.

    Article  Google Scholar 

  29. Ullah I, Shafie S, Khan I, Hsiao KL. Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge. Results Phys. 2018;1(9):183–94. https://doi.org/10.1016/j.rinp.2018.02.021.

    Article  Google Scholar 

  30. Khalid A, Khan I, Khan A, Shafie S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Int J Eng Sci Technol. 2015;18(3):309–17. https://doi.org/10.1016/j.jestch.2014.12.006.

    Article  Google Scholar 

  31. Khalid A, Khan I, Shafie S. Exact solutions for unsteady free convection flow of Casson fluid over an oscillating vertical plate with constant wall temperature. Abstract Appl Anal. 2015. https://doi.org/10.1155/2015/946350.

    Article  Google Scholar 

  32. Siddiqa S, Begum N, Ouazzi A, Hossain MA, Gorla RS. Heat transfer analysis of Casson dusty fluid flow along a vertical wavy cone with radiating surface. Int J Heat Mass Transf. 2018;1(127):589–96. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.022.

    Article  Google Scholar 

  33. Kumar MS, Sandeep N, Kumar BR, Saleem S. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alexandria Eng J. 2018;57(3):2027–34. https://doi.org/10.1016/j.aej.2017.05.010.

    Article  Google Scholar 

  34. Prasad KV, Vajravelu K, Vaidya H, Basha NZ, Umesh V. Thermal and species concentration of MHD Casson fluid at a vertical sheet in the presence variable fluid properties. Ain Shams Eng J. 2018;9(4):1763–79. https://doi.org/10.1016/j.asej.2016.08.017.

    Article  Google Scholar 

  35. Kataria HR, Patel HR. Effects of chemical reaction and heat generation/absorption on magnetohydrodynamic (MHD) Casson fluid flow over an exponentially accelerated vertical plate embedded in porous medium with ramped wall temperature and ramped surface concentration. Propul Power Res. 2019;8(1):35–46. https://doi.org/10.1016/j.jppr.2018.12.001.

    Article  Google Scholar 

  36. Yih KA. MHD forced convection flow adjacent to a non-isothermal wedge. Int Commun Heat Mass Transfer. 1999;26(6):819–27. https://doi.org/10.1016/S0735-1933(99)00070-6.

    Article  CAS  Google Scholar 

  37. Chamkha AJ, Mujtaba M, Quadri A, Issa C. Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat Mass Transf. 2003;39(4):305–12. https://doi.org/10.1007/s00231-002-0353-4.

    Article  Google Scholar 

  38. Al-Odat MQ, Al-Hussien FM, Damseh RA. Influence of radiation on mixed convection over a wedge in non-Darcy porous medium. Forsch Ingenieurwes. 2005;69(4):209. https://doi.org/10.1007/s10010-005-0004-2.

    Article  Google Scholar 

  39. Kandasamy R, Hashim I. Chemical reaction and variable viscosity effects on MHD mixed convection heat and mass transfer for Hiemenz flow over a porous wedge in the presence of suction or injection. Int J Fluid Mech Res. 2008;35(1):50. https://doi.org/10.1615/InterJFluidMechRes.v35.i1.10.

    Article  Google Scholar 

  40. Kaya A, Aydin O. The effect of radiation on forced convection flow around a wedge. J Thermal Sci Technol. 2009;29(1):1–6.

    Google Scholar 

  41. Pal D, Mondal H. Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge. Appl Math Comput. 2009;212(1):194–208. https://doi.org/10.1016/j.amc.2009.02.013.

    Article  Google Scholar 

  42. Mukhopadhyay S. Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge. J Appl Fluid Mech. 2009;2(2):29–34.

    Google Scholar 

  43. Su X, Zheng L, Zhang X, Zhang J. MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating. Chem Eng Sci. 2012;20(78):1–8. https://doi.org/10.1016/j.ces.2012.04.026.

    Article  CAS  Google Scholar 

  44. Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossain MA. Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng. 2014;11(6):735939. https://doi.org/10.1155/2014/735939.

    Article  CAS  Google Scholar 

  45. Uddin Z, Kumar M, Harmand S. Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents. Thermal Sci. 2014;18(suppl. 2):489–502. https://doi.org/10.2298/TSCI110712085U.

    Article  Google Scholar 

  46. Gebhart B. Effects of viscous dissipation in natural convection. J Fluid Mech. 1962;14(2):225–32. https://doi.org/10.1017/S0022112062001196.

    Article  Google Scholar 

  47. Reddy GJ, Raju RS, Rao JA. Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Eng J. 2018;9(4):1907–15. https://doi.org/10.1016/j.asej.2016.10.012.

    Article  Google Scholar 

  48. Gomez-Aguilar JF, Hernandez MM. Space-time fractional diffusion-advection equation with Caputo derivative. Abstract Appl Anal. 2014;1:2014.

    Google Scholar 

  49. Gomez F, Morales L, Gonzalez M, Alvarado V, Lopez G. Fractional thermal diffusion and the heat equation. Open Phys. 2015;13(1):10269. https://doi.org/10.1515/phys-2015-0023.

    Article  Google Scholar 

  50. Safdari H, Aghdam YE, Gomez-Aguilar JF. Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space-time fractional advection-diffusion equation. Eng Comput. 2020;18:1–2. https://doi.org/10.1007/s00366-020-01092-x.

    Article  Google Scholar 

  51. Liao S. Beyond perturbation: introduction to the Homotopy analysis method. Oxford: CRC Press; 2003.

    Book  Google Scholar 

  52. Rashidi MM, Erfani E. Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Eng Comput. 2012. https://doi.org/10.1108/02644401211246283.

    Article  Google Scholar 

  53. Khan MI, Alzahrani F, Hobiny A, Ali Z. Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy. J Mater Res Technol. 2020;9(5):9951–64. https://doi.org/10.1016/j.jmrt.2020.05.085.

    Article  CAS  Google Scholar 

  54. Waqas M, Khan MI, Asghar Z, Kadry S, Chu YM, Khan WA. Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept. J Mater Res Technol. 2020;9(5):11080–6. https://doi.org/10.1016/j.jmrt.2020.07.068.

    Article  CAS  Google Scholar 

  55. He JH, El-Dib YO. The enhanced homotopy perturbation method for axial vibration of strings. Mechanical Engineering. New York: Facta Universitatis; 2021. (https://doi.org/10.22190/FUME210125033H).

    Book  Google Scholar 

  56. He JH, El-Dib YO. Homotopy perturbation method with three expansions. J Math Chem. 2021;59(4):1139–50. https://doi.org/10.1007/s10910-021-01237-3.

    Article  CAS  Google Scholar 

  57. Anjum N, He JH, Ain QT, Tian D. Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. Facta Universitatis, Series: Mechanical Engineering. 2021. DOI 64. Number:10.22190/FUME210112025A

  58. He JH, El-Dib YO. The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer Methods Partial Differ Equ. 2021;37(2):1800–8. https://doi.org/10.1002/num.22609.

    Article  Google Scholar 

  59. He JH. Taylor series solution for a third order boundary value problem arising in architectural engineering. Ain Shams Eng J. 2020;11(4):1411–4. https://doi.org/10.1016/j.asej.2020.01.016.

    Article  Google Scholar 

  60. He CH, Shen Y, Ji FY, He JH. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals. 2020;28(01):2050011. https://doi.org/10.1142/S0218348X20500115.

    Article  Google Scholar 

  61. Ahmad H, Khan TA. Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations. J Low Freq Noise Vib Active Control. 2019;38(3–4):1113–24. https://doi.org/10.1177/1461348418823126.

    Article  Google Scholar 

  62. Ahmad H, Seadawy AR, Khan TA. Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm. Math Comput Simul. 2020;1(177):13–23. https://doi.org/10.1016/j.matcom.2020.04.005.

    Article  Google Scholar 

  63. Ahmad I, Khan MN, Inc M, Ahmad H, Nisar KS. Numerical simulation of simulate an anomalous solute transport model via local meshless method. Alexandria Eng J. 2020;59(4):2827–38. https://doi.org/10.1016/j.aej.2020.06.029.

    Article  Google Scholar 

  64. Inc M, Khan MN, Ahmad I, Yao SW, Ahmad H, Thounthong P. Analysing time-fractional exotic options via efficient local meshless method. Results Phys. 2020;1(19):103385. https://doi.org/10.1016/j.rinp.2020.103385.

    Article  Google Scholar 

  65. Takeuchi R, Ishikawa H, Aratake M, Saito I, Kumagai K, Akamatsu Y, Saito T. Medial opening wedge high tibial osteotomy with early full weight bearing. Arthrosc J Arthrosc Related Surg. 2009;25(1):46–53. https://doi.org/10.1016/j.arthro.2008.08.015.

    Article  Google Scholar 

  66. Ishak A, Nazar R, Pop I. Falkner-Skan equation for flow past a moving wedge with suction or injection. J Appl Math Comput. 2007;25(1):67–83. https://doi.org/10.1007/BF02832339.

    Article  Google Scholar 

Download references

Acknowledgements

The author Dr. Majid Hussain acknowledge the financial support provided by the Higher Education Commission Pakistan, under National Research Program for Universities No: 9145/Punjab/NRPU/R&D/HEC/ 2017, for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Ali, A., Ghaffar, A. et al. Flow and thermal study of MHD Casson fluid past a moving stretching porous wedge. J Therm Anal Calorim 147, 6959–6969 (2022). https://doi.org/10.1007/s10973-021-10983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10983-0

Keywords

Navigation