Skip to main content
Log in

Falkner-Skan equation for flow past a moving wedge with suction or injection

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Falkner and S. W. Skan,Some approximate solutions of the boundary-layer equations, Phiols. Mag.12 (1931), 865–896.

    MATH  Google Scholar 

  2. D. R. Hartree,On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer, Proc. Cambridge Phil. Soc.33 (1937), 223–239.

    MATH  Google Scholar 

  3. K. Stewartson,Further solutions of the Falkner-Skan equation, Proc. Cambridge Phil. Soc.50 (1954), 454–465.

    MATH  MathSciNet  Google Scholar 

  4. K. K. Chen and P. A. Libby,Boundary layers with small departure from the Falkner-Skan profile, J. Fluid Mech.33 (1968), 273–282.

    Article  MATH  Google Scholar 

  5. A. H. Craven and L. A. Peletier,On the uniqueness of solutions of the Falkner-Skan equation, Mathematika19 (1972), 135–138.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. P. Hastings,Reversed flow solutions of the Falkner-Skan equation, SIAM J. Appl. Math.22 (1972), 329–334.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Oskam and A. E. P. Veldman,Branching of the Falkner-Skan solutions for λ < 0, J. Engng. Math.16 (1982), 295–308.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. R. Rajagopal, A. S. Gupta and T. Y. Nath,A note on the Falkner-Skan flows of a non-Newtonian fluid, Int. J. Non-Linear Mech.18 (1983), 313–320.

    Article  MATH  Google Scholar 

  9. E. F. F. Botta, F. J. Hut and A. E. P. Veldman,The role of periodic solutions in the Falkner-Skan problem for λ > 0, J. Engng. Math.20 (1986), 81–93.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Brodie and W. H. H. Banks,Further properties of the Falkner-Skan equation, Acta Mechanica65 (1986), 205–211.

    Article  MathSciNet  Google Scholar 

  11. N. S. Asaithambi,A numerical method for the solution of the Falkner-Skan equation, Appl. Math. Comp.81 (1997), 259–264.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Asaithambi,A finite-difference method for the Falkner-Skan equation, Appl. Math. Comp.92 (1998), 135–141.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. S. Heeg, D. Dijkstra and P. J. Zandbergen,The stability of Falkner-Skan flows with several inflection points, J. Appl. Math. Phys. (ZAMP)50 (1999), 82–93.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. B. Zaturska and W. H. H. Banks,A new solution branch of the Falkner-Skan equation, Acta Mechanica152 (2001), 197–201.

    Article  MATH  Google Scholar 

  15. S.D. Harris, D. B. Ingham and I. Pop,Unsteady heat transfer in impulsive Falkner-Skan flows: Constant wall temperature case, Eur. J. Mech. B/Fluids21 (2002), 447–468.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. L. Kuo,Application of the differential transformation method to the solutions of Falkner-Skan wedge flow, Acta Mechanica164 (2003), 161–174.

    Article  MATH  Google Scholar 

  17. A. Pantokratoras,The Falkner-Skan flow with constant wall temperature and variable viscosity, Int. J. Thermal Sciences45 (2006) 378–389.

    Article  Google Scholar 

  18. G.C. Yang,On the equation f'"+ff"+λ(1−f2)=0 with λ ≤ -1/2arising in boundary layer theory, J. Appl. Math. & Computing20 (2006), 479–483.

    MATH  Google Scholar 

  19. S. J. Liao,A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate, J. Fluid Mech.385 (1999), 101–128.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Rosenhead,Laminar Boundary Layers, Oxford University Press, Oxford, 1963.

    MATH  Google Scholar 

  21. T. Watanabe,Thermal boundary layers over a wedge with uniform suction or injection in forced flow, Acta Mechanica83 (1990), 119–126.

    Article  Google Scholar 

  22. K. A. Yih,Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux, Acta Mechanica128 (1998), 173–181.

    Article  MATH  Google Scholar 

  23. J. C. Y. Koh, and J. P. Hartnett,Skin-friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature, Int. J. Heat Mass Transfer2 (1961), 185–198.

    Article  Google Scholar 

  24. W. H. H. Banks,Similarity solutions of the boundary-layer equations for a stretching wall, J. Mec. Theor. Appl.2 (1983), 375–392.

    MATH  MathSciNet  Google Scholar 

  25. J. Serrin,Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Roy. Soc. A299 (1967), 491–507.

    MathSciNet  Google Scholar 

  26. N. Riley and P. D. Weidman,Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary, SIAM J. Applied Mathematics49 (1989), 1350–1358.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. P. Abraham and E. M. Sparrow,Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface, Int. J. Heat Fluid Flow26 (2005), 289–295.

    Article  Google Scholar 

  28. E. M. Sparrow and J. P. Abraham,Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat Mass Transfer48 (2005), 3047–3056.

    Google Scholar 

  29. B. C. Sakiadis,Boundary layers on continuous solid surfaces, AIChE. J.,7 (1961), 26–28, see also pp. 221–225 and 467–472.

    Article  Google Scholar 

  30. H. Blasius,Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Math. Phys.56 (1908), 1–37.

    Google Scholar 

  31. E. Magyari and B. Keller,Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B-Fluids19 (2000), 109–122.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Schlichting,Boundary Layer Theory, McGraw-Hill, New York, 1979.

    MATH  Google Scholar 

  33. T. Fang,Further study on a moving-wall boundary-layer problem with mass transfer, Acta Mechanica163 (2003), 183–188.

    Article  MATH  Google Scholar 

  34. F. M. White,Viscous Fluid Flow, 3rd ed., Mc Graw-Hill, New York, 2006.

    Google Scholar 

  35. T. Cebeci and P. Bradshaw,Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, 1988.

    MATH  Google Scholar 

  36. E. M. Sparrow, E. R. Eckert and W. J. Minkowicz,Transpiration cooling in a magneto-hydrodynamic stagnation-point flow, Appl. Sci. Res. A11 (1962), 125–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roslinda Nazar.

Additional information

Supported by Ministry of Science, Technology and Innovation, Malaysia (IRPA Project Code: 09-02-02-10038-EAR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, A., Nazar, R. & Pop, I. Falkner-Skan equation for flow past a moving wedge with suction or injection. J. Appl. Math. Comput. 25, 67–83 (2007). https://doi.org/10.1007/BF02832339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02832339

AMS Mathematics Subject Classification

Key words and phrases

Navigation