Skip to main content
Log in

Investigation on the combustion characteristics of different plant parts of Cassia siamea by DSC-TGA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Plant parts like root, wood, twig and leaf of Cassia siamea, a fast-growing tree in the abandoned mines of Jharkhand, India, have been considered here as a possible fuel source for decentralized power generation. This is a low greenhouse gas emission pathway to cater the electricity need of the adjoining locality. Seasonal availability of the plant parts originated interests of studying the basic combustion characteristics of the plant parts separately. Finding out the roles of cellulose and lignin to regulate the combustion behavior of plant parts was another objective. Cellulose and lignin were extracted from each plant part, and their burning performances were evaluated against those of respective plant parts with the help of DSC-TGA. Cellulose and lignin were found to influence the combustion processes of plant parts differently. Lignin in case of leaf combustion and cellulose for wood combustion regulated the combustion process. Both lignin and cellulose were competitive in regulating the combustion of twig and root. Burning characteristics of cellulose or lignin extracted from different plant parts varied. Higher heating value (HHV) was low for celluloses (~ 16.8 ± 1 MJ kg−1) as compared to lignin (HHV ~ 23.0 ± 1 MJ kg−1). Leaf having substantial lignin and extractives showed the highest HHV around 23.5 MJ kg−1, while the lowest HHV (16.0 MJ kg−1) was observed for wood. Results are interesting for considering each plant part as a single fuel or as a potential component of coal–biomass blended fuel, where locally available low-grade high ash coal may be the other component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P, et al. A review of biomass potential and current utilisation—status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy. 2016;95:257–72. https://doi.org/10.1016/j.biombioe.2016.10.017.

    Article  Google Scholar 

  2. Perea-Moreno M-A, Samerón-Manzano E, Perea-Moreno A-J. Biomass as renewable energy: worldwide research trends. Sustainability. 2019;11(3):863.

    Article  Google Scholar 

  3. Cruz G, Rodrigues ALP, da Silva DF, Gomes WC. Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09330-6.

    Article  Google Scholar 

  4. Reis JS, Araujo RO, Lima VMR, Queiroz LS, da Costa CEF, Pardauil JJR, et al. Combustion properties of potential Amazon biomass waste for use as fuel. J Therm Anal Calorim. 2019;138(5):3535–9. https://doi.org/10.1007/s10973-019-08457-5.

    Article  CAS  Google Scholar 

  5. Wang X, Wang X, Qin G, Chen M, Wang J. Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. J Therm Anal Calorim. 2018;132(2):1317–23. https://doi.org/10.1007/s10973-018-6987-3.

    Article  CAS  Google Scholar 

  6. Chen T, Li L, Zhao R, Wu J. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim. 2017;128(3):1825–32. https://doi.org/10.1007/s10973-016-6040-3.

    Article  CAS  Google Scholar 

  7. Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel. 2019;258:116168. https://doi.org/10.1016/j.fuel.2019.116168.

    Article  CAS  Google Scholar 

  8. Ding Y, Huang B, Li K, Du W, Lu K, Zhang Y. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy. 2020;195:117010. https://doi.org/10.1016/j.energy.2020.117010.

    Article  CAS  Google Scholar 

  9. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  10. Yeo JY, Chin BLF, Tan JK, Loh YS. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst. 2019;92(1):27–37. https://doi.org/10.1016/j.joei.2017.12.003.

    Article  CAS  Google Scholar 

  11. Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv. 2015;5(34):26509–16. https://doi.org/10.1039/C5RA02715B.

    Article  CAS  Google Scholar 

  12. Idris SS, Rahman NA, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol. 2012;123:581–91. https://doi.org/10.1016/j.biortech.2012.07.065.

    Article  CAS  PubMed  Google Scholar 

  13. Sahu SG, Chakraborty N, Sarkar P. Coal–biomass co-combustion: an overview. Renew Sustain Energy Rev. 2014;39:575–86. https://doi.org/10.1016/j.rser.2014.07.106.

    Article  CAS  Google Scholar 

  14. Sarkar P, Sahu SG, Chakraborty N, Adak AK. Studies on potential utilization of rice husk char in blend with lignite for co-combustion application. J Therm Anal Calorim. 2014;115(2):1573–81. https://doi.org/10.1007/s10973-013-3499-z.

    Article  CAS  Google Scholar 

  15. Sarkar P, Sahu SG, Mukherjee A, Kumar M, Adak AK, Chakraborty N, et al. Co-combustion studies for potential application of sawdust or its low temperature char as co-fuel with coal. Appl Therm Eng. 2014;63(2):616–23. https://doi.org/10.1016/j.applthermaleng.2013.11.069.

    Article  CAS  Google Scholar 

  16. Wang C, Liu Y, Zhang X, Che D. A study on coal properties and combustion characteristics of blended coals in Northwestern China. Energy Fuels. 2011;25(8):3634–45. https://doi.org/10.1021/ef200686d.

    Article  CAS  Google Scholar 

  17. Okoroigwe EC. Combustion analysis and devolatilazation kinetics of gmelina, mango, neem and tropical almond woods under oxidative condition. Int J Renew Energy Res. 2015;5(4):1024–33.

    Google Scholar 

  18. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88(6):1024–30. https://doi.org/10.1016/j.fuel.2008.10.034.

    Article  CAS  Google Scholar 

  19. Haykırı-Açma H. Combustion characteristics of different biomass materials. Energy Convers Manag. 2003;44(1):155–62. https://doi.org/10.1016/S0196-8904(01)00200-X.

    Article  Google Scholar 

  20. Bilbao R, Mastral JF, Aldea ME, Ceamanos J. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J Anal Appl Pyrol. 1997;39(1):53–64. https://doi.org/10.1016/S0165-2370(96)00957-6.

    Article  CAS  Google Scholar 

  21. Mansaray KG, Ghaly AE. Determination of reaction kinetics of rice husks in air using thermogravimetric analysis. Energy Sources. 1999;21(10):899–911. https://doi.org/10.1080/00908319950014272.

    Article  CAS  Google Scholar 

  22. Islam MA, Auta M, Kabir G, Hameed BH. A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char. Bioresour Technol. 2016;200:335–41. https://doi.org/10.1016/j.biortech.2015.09.057.

    Article  CAS  PubMed  Google Scholar 

  23. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–9. https://doi.org/10.1016/j.biortech.2012.04.081.

    Article  CAS  PubMed  Google Scholar 

  24. Manić N, Janković B, Pijović M, Waisi H, Dodevski V, Stojiljković D, et al. Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09307-5.

    Article  Google Scholar 

  25. Font R, Moltó J, Gálvez A, Rey MD. Kinetic study of the pyrolysis and combustion of tomato plant. J Anal Appl Pyrol. 2009;85(1):268–75. https://doi.org/10.1016/j.jaap.2008.11.026.

    Article  CAS  Google Scholar 

  26. Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy. 2007;32(4):649–61. https://doi.org/10.1016/j.renene.2006.02.017.

    Article  CAS  Google Scholar 

  27. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis. 2014;107:323–31. https://doi.org/10.1016/j.jaap.2014.03.017.

    Article  CAS  Google Scholar 

  28. Chen H. Chapter 2. Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Netherlands: Springer. 2014. pp. 25–71.

  29. Van De Ven TGM, Godbout L. Cellulose: fundamental aspects. IntechOpen; 2013.

  30. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307. https://doi.org/10.1016/j.biombioe.2010.08.067.

    Article  CAS  Google Scholar 

  31. Garcia-Maraver A, Salvachúa D, Martínez MJ, Diaz LF, Zamorano M. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 2013;33(11):2245–9. https://doi.org/10.1016/j.wasman.2013.07.010.

    Article  CAS  PubMed  Google Scholar 

  32. Mukhopadhyay S, Maiti SK, Masto RE. Use of reclaimed mine soil index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol Eng. 2013;57:133–42. https://doi.org/10.1016/j.ecoleng.2013.04.017.

    Article  Google Scholar 

  33. Mukhopadhyay S, Maiti SK, Masto RE. Development of mine soil quality index (MSQI) for evaluation of reclamation success: a chronosequence study. Ecol Eng. 2014;71:10–20. https://doi.org/10.1016/j.ecoleng.2014.07.001.

    Article  Google Scholar 

  34. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S. Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. 2009. http://old.worldagroforestry.org/treedb/AFTPDFS/Senna_siamea.PDF. Downloaded on 6. 9. 19.

  35. Bodirlau R, Spiridon I, Teaca CA. Chemical investigation on wood tree species in a temperate forest, east-northern Romania. BioResources. 2007;2(1):17.

    Article  Google Scholar 

  36. TAPPI norm T 204 om-88. Wood extractives in ethanol-benzene mixture. 1988. Atlanta, GA, USA: Tappi Press.

  37. TAPPI norm T 222 om-02. Acid-insoluble lignin in wood and pulp. In: TAPPI test methods. Atlanta, GA: Tappi Press. USA2002.

  38. TAPPI Method UM 250. Acid-soluble lignin in wood and pulp. In: TAPPI useful methods. Atlanta, GA: Tappi Press. USA1991.

  39. Pettersen R. Chemical composition of wood, the chemistry of solid woods. In: Rowell RM, editor. Advances in Chemistry Series 207. 1984. Washington D.C.: American Chemical Society.

  40. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA. Cell wall chemistry. Handbook of wood chemistry and wood composites. In: Rowell RM, editor. Boca Raton, Fla.: CRC Press; 2005. pp. 35–74.

  41. Mukhopadhyay S, Masto RE. Carbon storage in coal mine spoil by Dalbergia sissoo Roxb. Geoderma. 2016;284:204–13. https://doi.org/10.1016/j.geoderma.2016.09.004.

    Article  CAS  Google Scholar 

  42. Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag. 2001;42(11):1357–78. https://doi.org/10.1016/S0196-8904(00)00137-0.

    Article  Google Scholar 

  43. Sahu SG, Sarkar P, Chakraborty N, Adak AK. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010;91(3):369–78. https://doi.org/10.1016/j.fuproc.2009.12.001.

    Article  CAS  Google Scholar 

  44. Di Blasi C, Branca C, Santoro A, Gonzalez HE. Pyrolytic behavior and products of some wood varieties. Combust Flame. 2001;124(1):165–77. https://doi.org/10.1016/S0010-2180(00)00191-7.

    Article  Google Scholar 

  45. Dahiru D, Malgwi AR, Sambo HS. Growth inhibitory effect of Senna siamea leaf extracts on selected microorganisms. Am J Med Med Sci. 2013;3(5):103–7.

    Google Scholar 

  46. Momin MAM, Bellah SF, Afrose A, Urmi KF, Hamid K, Rana MS. Phytochemical screening and cytotoxicity potential of ethanolic extracts of Senna siamea leaves. J Pharm Sci Res. 2012;4(8):1817–79.

    Google Scholar 

  47. Tanty H, Permai SD, Pudjihastuti H. In vivo anti-diabetic activity test of ethanol extract of the leaves of Cassia Siamea Lamk. Proc Comput Sci. 2018;135:632–42. https://doi.org/10.1016/j.procs.2018.08.223.

    Article  Google Scholar 

  48. Mund NK, Dash D, Barik CR, Goud VV, Sahoo L, Mishra P, et al. Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: an efficient biomass producing tree legume. Bioresour Technol. 2016;207:205–12. https://doi.org/10.1016/j.biortech.2016.01.118.

    Article  CAS  PubMed  Google Scholar 

  49. Campbell MM, Sederoff RR. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 1996;110(1):3–13. https://doi.org/10.1104/pp.110.1.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20(3):848–89. https://doi.org/10.1021/ef0502397.

    Article  CAS  Google Scholar 

  51. Poletto M, Ornaghi HL, Zattera AJ. Native cellulose: structure, characterization and thermal properties. Materials (Basel, Switzerland). 2014;7(9):6105–19. https://doi.org/10.3390/ma7096105.

    Article  Google Scholar 

  52. Longaresi RH, de Menezes AJ, Pereira-da-Silva MA, Baron D, Mathias SL. The maize stem as a potential source of cellulose nanocrystal: cellulose characterization from its phenological growth stage dependence. Ind Crops Prod. 2019;133:232–40. https://doi.org/10.1016/j.indcrop.2019.02.046.

    Article  CAS  Google Scholar 

  53. Saldarriaga JF, Aguado R, Pablos A, Amutio M, Olazar M, Bilbao J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel. 2015;140:744–51. https://doi.org/10.1016/j.fuel.2014.10.024.

    Article  CAS  Google Scholar 

  54. Shen DK, Gu S, Bridgwater AV. The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym. 2010;82(1):39–45. https://doi.org/10.1016/j.carbpol.2010.04.018.

    Article  CAS  Google Scholar 

  55. Kim KH, Kim J-Y, Cho T-S, Choi JW. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol. 2012;118:158–62. https://doi.org/10.1016/j.biortech.2012.04.094.

    Article  CAS  PubMed  Google Scholar 

  56. Buckley TJ. Calculation of higher heating values of biomass materials and waste components from elemental analyses. Resour Conserv Recycl. 1991;5(4):329–41. https://doi.org/10.1016/0921-3449(91)90011-C.

    Article  Google Scholar 

  57. Buckingham K. Rebranding bamboo for bonn: the 5 Million hectare restoration pledge. 2014. Available online: http: //www.wri.org/blog/2014/12/rebranding-bamboo-bonn-5-million-hectare-restoration-pledge. Accessed on 29 Oct 2020.

  58. Demirbas A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit. 2002;20(1):105–11. https://doi.org/10.1260/014459802760170420.

    Article  Google Scholar 

  59. Rodriguez Correa C, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, Kruse A. Pyrolysis versus hydrothermal carbonization: understanding the effect of biomass structural components and inorganic compounds on the char properties. J Anal Appl Pyrolysis. 2019;140:137–47. https://doi.org/10.1016/j.jaap.2019.03.007.

    Article  CAS  Google Scholar 

  60. Demirbaş A. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers Manag. 2003;44(9):1481–6. https://doi.org/10.1016/S0196-8904(02)00168-1.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by Council of Scientific & Industrial Research (CSIR), Government of India under Scientist Pool Scheme (Pool No. 8888/A), is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Sarkar, P., Masto, R.E. et al. Investigation on the combustion characteristics of different plant parts of Cassia siamea by DSC-TGA. J Therm Anal Calorim 147, 3469–3481 (2022). https://doi.org/10.1007/s10973-021-10709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10709-2

Keywords

Navigation