Skip to main content
Log in

Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin

Sinusoidally modulated temperature method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis kinetic analysis of the three pseudocomponents of biomass, namely cellulose, hemicellulose and lignin, were investigated using a thermogravimetric (TG) analyzer. The multi-peaks method was used to fit the Gaussian distribution model of DTG curves. The activation energies of three pseudocomponents pyrolysis were evaluated using sinusoidally modulated temperature method. The results showed that the multi-peaks methods can fit the DTG curves of cellulose, hemicellulose and lignin successfully. There was only one reaction stage for the pyrolysis of cellulose and hemicelluloses. There were two reaction stages for the pyrolysis of lignin. The average E was 112.6, 162.8 and 156.8 kJ mol−1 for cellulose, hemicellulose and lignin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee JW, Hawkins B, Day DM, Reicosky DC. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy Environ Sci. 2010;3(11):1695–705.

    Article  CAS  Google Scholar 

  2. Vinu R, Broadbelt LJ. A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci. 2012;5(12):9808–26.

    Article  CAS  Google Scholar 

  3. Chen T, Liu R, Scott NR. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—biochar, syngas and bio-oil. Fuel Process Technol. 2016;142:124–34.

    Article  CAS  Google Scholar 

  4. Mahinpey N, Murugan P, Mani T, Raina R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuels. 2009;23(5):2736–42.

    Article  CAS  Google Scholar 

  5. Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol. 1999;51(1–2):3–22.

    Article  CAS  Google Scholar 

  6. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol. 2012;114:644–53.

    Article  CAS  Google Scholar 

  7. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  8. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1998;13(1):1–22.

    Article  Google Scholar 

  9. Baroni ÉdG, Tannous K, Rueda-Ordóñez YJ, Tinoco-Navarro LK. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. J Therm Anal Calorim. 2015;123(2):909–17.

    Article  Google Scholar 

  10. Wang J, Zhao H. Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim. 2016;124(3):1635–40.

    Article  CAS  Google Scholar 

  11. Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2015;123(2):1003–11.

    Article  Google Scholar 

  12. Braun RL, Burnham AK. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels. 1987;1(2):153–61.

    Article  CAS  Google Scholar 

  13. Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta. 2013;566:36–43.

    Article  CAS  Google Scholar 

  14. Cai J, Wu W, Liu R. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis. Bioresour Technol. 2013;132:423–6.

    Article  CAS  Google Scholar 

  15. Li Z, Zhao W, Meng B, Liu C, Zhu Q, Zhao G. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresour Technol. 2008;99(16):7616–22.

    Article  CAS  Google Scholar 

  16. Zhang J, Chen T, Wu J, Wu J. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N2 and CO2 atmosphere. Bioresour Technol. 2014;166:87–95.

    Article  CAS  Google Scholar 

  17. Mamleev V, Bourbigot S, Bras ML, Lefevre J. Three model-free methods for calculation of activation energy in TG. J Therm Anal Calorim. 2004;78:1009–27.

    Article  CAS  Google Scholar 

  18. Mamleev V, Bourbigot S. Modulated thermogravimetry in analysis of decomposition kinetics. Chem Eng Sci. 2005;60(3):747–66.

    Article  CAS  Google Scholar 

  19. Mamleev V, Bourbigot S, Le Bras M, Yvon J, Lefebvre J. Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chem Eng Sci. 2006;61(4):1276–92.

    Article  CAS  Google Scholar 

  20. Chen T, Wu C, Liu R, Fei W, Liu S. Effect of hot vapor filtration on the characterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bed reactor. Bioresour Technol. 2011;102(10):6178–85.

    Article  CAS  Google Scholar 

  21. Chen T, Deng C, Liu R. Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor. Energy Fuels. 2010;24(12):6616–23.

    Article  CAS  Google Scholar 

  22. Chen T, Zhang J, Wu J. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Bioresour Technol. 2016;211:502–8.

    Article  CAS  Google Scholar 

  23. Chen T, Wu J, Zhang J, Wu J, Sun L. Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresour Technol. 2014;153:223–9.

    Article  CAS  Google Scholar 

  24. Cai J, Wu W, Liu R, Huber GW. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15(5):1331–40.

    Article  CAS  Google Scholar 

  25. Mamleev V, Bourbigot S. Calculation of activation energies using the sinusoidally modulated temperature. J Therm Anal Calorim. 2002;70:565–79.

    Article  CAS  Google Scholar 

  26. Cai J, Han D, Chen C, Chen S. Application of the golden section search algorithm in the nonlinear isoconversional calculations to the determination of the activation energy from nonisothermal kinetic conversion data. Solid State Sci. 2010;12(5):829–33.

    Article  CAS  Google Scholar 

  27. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, et al. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22(6):4292–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Project No. 51406220) and Shanxi Province Coal-based Key Technology Research and Development Program (Project No. MD 2014-03) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruidong Zhao or Jinhu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, L., Zhao, R. et al. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim 128, 1825–1832 (2017). https://doi.org/10.1007/s10973-016-6040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6040-3

Keywords

Navigation