Skip to main content
Log in

Natural convection of nanofluids in solar energy collectors based on a two-phase lattice Boltzmann model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to improve the photothermal conversion efficiency of solar energy collectors, the laminar convection of nanofluids in five types of solar energy collectors was numerically studied with a two-phase lattice Boltzmann model. In the current simulation, Cu–water nanofluids (volume fraction φ = 0.3%) were chosen. The equilibrium distribution function with D2Q9 model and the boundary conditions of nonequilibrium extrapolation scheme were applied to establish the lattice Boltzmann model. The effects of different Rayleigh numbers (Ra = 104–106), structures (rectangle cavity, trapezoid cavity and parallelogram cavity) and aspect ratios (A = 2:1, 4:3 and 1:1) of solar energy collectors on the heat transfer were considered. The temperature distribution, streamline and entropy generation of nanofluids in the solar energy collectors were analyzed. Results demonstrated that the increase in Rayleigh number heightens the heat convection of nanofluids. The trapezoid cavity and parallelogram have a special structure, which will form a flow dead zone, weaken the heat transfer effect and determine the position of maximum entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

a :

Direction of vectors

A :

Aspect ratio

c :

Grid speed

c p :

Specific heat of nanofluids, J kg1 K1

d :

Length of the cavity

E :

Potential energy

Ec:

Eckert number

e :

Velocity vectors

F :

Force term, N

f :

Velocity distribution function

G :

Effective external force

g :

Gravity, m s2

H :

Height of the cavity

Ha:

Hamaker constant

k :

Boltzmann constant

L :

Distance between particles

Ma:

Mach numbers

Nu:

Nusselt number

n:

Number of neighboring particles

Pe:

Peclet number

Pr:

Prandtl number

p :

Pressure, Pa

R :

Particle radius, m

Ra:

Rayleigh number

r :

Position of grid

S :

Entropy generation

T :

Temperature distribution function

T C :

Lattice temperature of the cool wall

T H :

Lattice temperature of the heat wall

T mid :

Outlet temperatures, K

t :

Time

u :

Velocity of nanofluids, m s1

U :

Transversal velocity components

u :

Macro velocity

V :

Vertical velocity component

v :

Volume of a single grid

x :

Transversal grid length

y :

Vertical grid length

β :

Thermal expansion coefficient, 1 K−1

ρ :

Density, kg m3

φ :

Volume fraction, %

δ t :

Time steps

λ :

Thermal conductivity, W m1 K1

μ :

Dynamic viscosity, Pa s

ν :

Kinematic air viscosity

ξ :

Gaussian distribution variable

σ :

Two components of nanofluids

τ f :

Dimensionless relaxation times of velocity

τ T :

Dimensionless relaxation times of temperature

χ :

Thermal diffusion coefficient

A:

Potential energy

a :

Vectors number

B:

Brown force

bf:

Base fluid

D:

Resistance between phases

eq:

Equilibrium states

FFI:

Irreversible fluid flow

f:

Nanofluids

H:

Gravity and buoyancy

HTI:

Irreversible heat transfer

nf:

Nanofluids

p:

Particle

w1:

External force of solid phase

w2:

External force of liquid phase

x:

The x-axis direction

y:

The y-axis direction

0:

Initial value

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294–303.

    Article  CAS  PubMed  Google Scholar 

  2. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  3. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5.

    Article  CAS  Google Scholar 

  4. Akhgar A, Toghraie D, Sina N, Afrand M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/ethylene glycol hybrid nanofluid. Powder Technol. 2019;355:602–10.

    Article  CAS  Google Scholar 

  5. Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Sol Energy. 2019;182:340–7.

    Article  CAS  Google Scholar 

  6. Naseem S, Wu C, Chala TF. Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Sol Energy. 2019;194:391–9.

    Article  CAS  Google Scholar 

  7. Hu Y, He Y, Gao H, Zhang Z. Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications. Appl Therm Eng. 2019;155:650–9.

    Article  CAS  Google Scholar 

  8. Arunachala U, Sreepathi L, Siddhartha BM. Analytical studies on drop of HWB constants due to scaling in natural circulation flat plate solar water heater. Int J Sustain Energy. 2014;33(1):192–202.

    Article  Google Scholar 

  9. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    Article  CAS  Google Scholar 

  10. Afrand M, Toghraie D, Ruhani BJ. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4-Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  11. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  12. Shahsavar A, Godini A, Sardari PT, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J Therm Anal Calorim. 2019;137(3):1031–43.

    Article  CAS  Google Scholar 

  13. Shahsavar A, Sardari PT, Toghraie D. Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Method Heat Fluid Flow. 2019;29(3):915–34.

    Article  Google Scholar 

  14. Bahiraei M, Heshmatian S. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers Manag. 2018;168:357–70.

    Article  CAS  Google Scholar 

  15. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Wongwises S. An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Appl Therm Eng. 2018;129:577–86.

    Article  CAS  Google Scholar 

  16. Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)-SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.

    Article  CAS  Google Scholar 

  17. Li Z, Shahsavar A, Al-Rashed AA, Talebizadehsardari P. Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system. Appl Therm Eng. 2020;167:114777.

    Article  CAS  Google Scholar 

  18. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  19. Zhang Y, Huang Y, Xu M, Lei J, Li Z, Tian Y. Flow and heat transfer simulation in porous volumetric solar receivers by non-orthogonal multiple-relaxation time lattice Boltzmann method. Sol Energy. 2020;201:409–19.

    Article  Google Scholar 

  20. Hatami M, Ganji DD. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Stud Therm Eng. 2014;2:14–22.

    Article  Google Scholar 

  21. Afrand M, Farahat S, Nezhad AH, Sheikhzadeh GA, Sarhaddi F. Numerical simulation of electrically conducting fluid flow and free convective heat transfer in an annulus on applying a magnetic field. Heat Transf Res. 2014;45(8):749–66.

    Article  Google Scholar 

  22. Izadi M, Behzadmehr A, Shahmardan MM. Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J Chem Eng. 2014;31(1):12–9.

    Article  CAS  Google Scholar 

  23. Wang G, Qi C, Tang J. Natural convection heat transfer characteristics of TiO2–H2O nanofluids in a cavity filled with metal foam. J Therm Anal Calorim. 2020;141(1):15–24.

    Article  CAS  Google Scholar 

  24. Amiri Delouei A, Sajjadi H, Izadi M, Mohebbi R. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study. Appl Therm Eng. 2018;146:268–77.

    Article  Google Scholar 

  25. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  26. Alsagri AS, Moradi R. Application of KKL model in studying of nanofluid heat transfer between two rotary tubes. Case Stud Therm Eng. 2019;14:100478.

    Article  Google Scholar 

  27. Ali HM, Ali H, Liaquat H, Bin Maqsood HT, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015;84:317–24.

    Article  CAS  Google Scholar 

  28. Qi C, Zhao N, Cui X, Chen T, Hu J. Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int J Heat Mass Transf. 2018;123:320–30.

    Article  CAS  Google Scholar 

  29. Qi C, Li C, Zhao G, Liu M, Han D. Influence of rotation angle of a triangular tube with a built-in twisted tape on the thermal-exergy efficiency and entropy generation of nanofluids in the heat exchange system. Asia-Pac J Chem Eng. 2020;15(1):e2401.

    Article  CAS  Google Scholar 

  30. Feng S, Han X. A novel multi-grid based reanalysis approach for efficient prediction of fatigue crack propagation. Comput Method Appl Mech Eng. 2019;353:107–22.

    Article  Google Scholar 

  31. Li Z, Manh TD, Gerdroodbary MB, Nam ND, Moradi R, Babazadeh H. The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow. Energy. 2020;193:116801.

    Article  CAS  Google Scholar 

  32. Li Z, Sheikholeslami M, Ayani M, Shamlooei M, Shafee A, Waly MI, Tlili I. Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach. Phys A. 2019;524:540–52.

    Article  Google Scholar 

  33. Hussein AM, Bakar R, Kadirgama K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud Therm Eng. 2014;2:50–61.

    Article  Google Scholar 

  34. Sardari PT, Rahimzadeh H, Ahmadi G, Giddings D. Nano-particle deposition in the presence of electric field. J Aerosol Sci. 2018;126:169–79.

    Article  CAS  Google Scholar 

  35. Dehghan M, Daneshipour M, Valipour MS. Nanofluids and converging flow passages: A synergetic conjugate-heat-transfer enhancement of micro heat sinks. Int Commun Heat Mass Transf. 2018;97:72–7.

    Article  CAS  Google Scholar 

  36. Kilic M, Ali HM. Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm Sci. 2019;23(5 Part B):3165–73.

    Article  Google Scholar 

  37. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A. CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J. 2011;168(3):1217–26.

    Article  CAS  Google Scholar 

  38. Wang X, Gao X, Bao K, Hua C, Han X, Chen G. Experimental Investigation on the Temperature Distribution Characteristics of the Evaporation Section in a Pulsating Heat Pipe. J Therm Sci. 2019;28(2):246–51.

    Article  Google Scholar 

  39. Wang X, Yan Y, Meng X, Chen G. A general method to predict the performance of closed pulsating heat pipe by artificial neural network. Appl Therm Eng. 2019;157:113761.

    Article  Google Scholar 

  40. Msaddak A, Sediki E, Ben SM. Assessment of thermal heat loss from solar cavity receiver with Lattice Boltzmann method. Sol Energy. 2018;173:1115–25.

    Article  Google Scholar 

  41. Sheikholeslami M, Rashidi MM. Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem E. 2015;56:6–15.

    Article  CAS  Google Scholar 

  42. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    Article  CAS  Google Scholar 

  43. Atashafrooz M, Sheikholeslami M, Sajjadi H, Delouei AA. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. J Magn Magn Mater. 2019;478:216–26.

    Article  CAS  Google Scholar 

  44. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69.

    Article  Google Scholar 

  45. Mohebbi R, Delouei AA, Jamali A, Izadi M, Mohamad AA. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method. Phys A. 2019;525:642–56.

    Article  CAS  Google Scholar 

  46. Shah Z, Dawar A, Khan I, Islam S, Chaun Ching DL, Khan AZ. Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. Case Stud Therm Eng. 2019;13:100352.

    Article  Google Scholar 

  47. Li Z, Shafee A, Ramzan M, Rokni H, Al-Mdallal Q. Simulation of natural convection of Fe3O4-water ferrofluid in a circular porous cavity in the presence of a magnetic field. Eur Phys J Plus. 2019;134(2):77–84.

    Article  Google Scholar 

  48. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33.

    Article  CAS  Google Scholar 

  49. Bahiraei M. Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. J Mol Liq. 2015;209:531–8.

    Article  CAS  Google Scholar 

  50. Mei S, Qi C, Liu M, Fan F, Liang L. Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube. Int J Heat Mass Transf. 2019;134:707–21.

    Article  CAS  Google Scholar 

  51. Afrand M, Esfe MH, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E. 2016;87:242–7.

    Article  Google Scholar 

  52. Izadi M, Sinaei S, Mehryan SAM, Oztop HF, Nidal AH. Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. Int J Heat Mass Transf. 2018;127:67–75.

    Article  CAS  Google Scholar 

  53. Qi C, Tang J, Wang G. Natural convection of composite nanofluids based on a two-phase lattice Boltzmann model. J Therm Anal Calorim. 2020;141(1):277–87.

    Article  CAS  Google Scholar 

  54. Mohebbi R, Izadi M, Sajjadi H, Delouei AA, Shermet MA. Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys A. 2019;526:120831.

    Article  Google Scholar 

  55. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi S. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A. 2014;402:150–68.

    Article  CAS  Google Scholar 

  56. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B-Fluid. 2015;49:89–99.

    Article  Google Scholar 

  57. Moshfegh A, Mehrizi AA, Javadzadegan A, Joshaghani M, Ghasemi-Fare O. Numerical investigation of various nanofluid heat transfers in microchannel under the effect of partial magnetic field: lattice Boltzmann approach. J Therm Anal Calorim. 2020;140(2):773–87.

    Article  CAS  Google Scholar 

  58. Karimipour A. New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci. 2015;91:146–56.

    Article  CAS  Google Scholar 

  59. Kazemian Y, Rashidi S, Esfahani JA, Samimi-Abianeh O. Effects of grains shapes of porous media on combustion onset-A numerical simulation using Lattice Boltzmann method. Comput Math Appl. 2019;81:547–61.

    Article  Google Scholar 

  60. Kazemian Y, Rashidi S, Esfahani JA, Karimi N. Simulation of conjugate radiation–forced convection heat transfer in a porous medium using the lattice Boltzmann method. Meccanica. 2019;54(3):505–24.

    Article  Google Scholar 

  61. Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–72.

    Article  CAS  Google Scholar 

  62. Cao Y, Bai Y, Du J, Rashidi S. A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity. J Energ Resour. 2020;142(11):112104.

    Article  CAS  Google Scholar 

  63. Hong K, Yang Y, Rashidi S, Guan Y, Xiong Q. Numerical simulations of a Cu-water nanofluid-based parabolic-trough solar collector. J Therm Anal Calorim. 2020;2020:1–13. https://doi.org/10.1007/s10973-020-09386-4.

    Article  CAS  Google Scholar 

  64. Qi C, He Y, Yan S, Tian F, Hu Y. Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase lattice Boltzmann method. Nanoscale Res Lett. 2013;8(1):56–71.

    Article  PubMed  PubMed Central  Google Scholar 

  65. He X, Luo L. Lattice Boltzmann model for the incompressible Navier–Stokes equation. J Stat Phys. 1997;88(3):927–44.

    Article  Google Scholar 

  66. Xuan Y, Yao Z. Lattice Boltzmann model for nanofluids. Heat Mass Transf. 2005;41(3):199–205.

    Google Scholar 

  67. Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids. 2002;39(4):325–42.

    Article  Google Scholar 

  68. Qi C, Liang L, Rao Z. Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method. Inter J Heat Mass Transf. 2016;94:316–26.

    Article  CAS  Google Scholar 

  69. Jiang K, Pinchuk P. Temperature and size-dependent Hamaker constants for metal nanoparticles. Nanotechnology. 2016;27(34):345710.

    Article  CAS  PubMed  Google Scholar 

  70. Guo Z, Zheng C, Shi B. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin Phys. 2002;11(4):366–74.

    Article  Google Scholar 

  71. Kashyap D, Dass AK. Two-phase lattice Boltzmann simulation of natural convection in a Cu-water nanofluid-filled porous cavity: Effects of thermal boundary conditions on heat transfer and entropy generation. Adv Powder Technol. 2018;29(11):2707–24.

    Article  CAS  Google Scholar 

  72. Rashidi S, Yang L, Khoosh-Ahang A, Jing D, Mahian O. Entropy generation analysis of different solar thermal systems. Environ Sci Pollut R. 2020;27(17):20699–724.

    Article  Google Scholar 

  73. Sheikholeslami M, Ashorynejad HR, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq. 2016;214:86–95.

    Article  CAS  Google Scholar 

  74. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  75. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Article  Google Scholar 

  76. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  77. He Y, Qi C, Hu Y, Qin B, Ding Y. Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity. Nanoscale Res Lett. 2011;6(1):184–91.

    Article  PubMed  PubMed Central  Google Scholar 

  78. D”Orazio A, Corcione M, Celata GP. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci. 2004;43(6):575–86.

    Article  Google Scholar 

  79. Hortmann M, Perić M, Scheuerer G. Finite volume multigrid prediction of laminar natural convection: bench-mark solutions. Int J Numer Methods Fluids. 1990;11(2):189–207.

    Article  Google Scholar 

  80. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a veritical square enclosure. In: Proceedings of the 1st ASME-JSME thermal engineering joint conference; Honolulu, Hawaii, 1983. p. 323–9.

  81. Patterson J, Imberger J. Unsteady natural convection in a rectangular cavity. J Fluid Mech. 1980;100(1):65–86.

    Article  Google Scholar 

  82. Wang K, Bai CP, Wang YQ, Liu M. Flow dead zone analysis and structure optimization for the trefoil-baffle heat exchanger. Int J Therm Sci. 2019;140:127–34.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by “Natural Science Foundation of Jiangsu Province, China” (Grant No. BK20181359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Li, C., Li, K. et al. Natural convection of nanofluids in solar energy collectors based on a two-phase lattice Boltzmann model. J Therm Anal Calorim 147, 2417–2438 (2022). https://doi.org/10.1007/s10973-021-10668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10668-8

Keywords

Navigation