Skip to main content
Log in

Thermal parameters of undoped and medicines doped calcium hydrogen phosphate dihydrate and magnesium ammonium phosphate hexahydrate crystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, undoped and medicines doped Calcium Hydrogen Phosphate Dihydrate and Magnesium Ammonium Phosphate Hexahydrate crystals are grown using single diffusion gel growth method at room temperature (30 °C). Thermal parameters such as Debye Waller factor, Debye Temperature, Mean square amplitude of vibration and Debye frequency are calculated to analyse the thermal properties of the grown crystals. The Debye temperature for doped crystals increases, which may result in the lowest chance of the formation of urinary stone crystals. Debye frequency obtained lie in the infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. http://kidney.niddk.nih.gov/kudiseases/pubs/stonesadults/#what is. Accessed 15 June 2019.

  2. D’Alessio E, Bramanti M, Piperno G, Naccarato, . An 8500-year-old bladder stone from Uzzo Cave (Trapani): Fourier transform-infrared spectroscopy analysis. Archaeometry. 2005;47:127–36.

    Article  Google Scholar 

  3. Prywer J, Torzewska A. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst Res Technol. 2010;45:1283–9.

    Article  CAS  Google Scholar 

  4. Griffith DP. Struvite Stones. Kidney Int. 1978;13:372–82.

    Article  CAS  Google Scholar 

  5. Christina AJ, Priya Mole M, Moorthy P. Studies on the antilithic effect of Rotula aquaticalour in male wistar rats. Met Find Exp Clin Pharmaco. 2002;24:357–9.

    Article  CAS  Google Scholar 

  6. Trinchieri A, Castelnuovo C, Lizzano R, Zanetti G. Calcium stone disease: a multiform reality. Urol Res. 2005;33:194–8.

    Article  CAS  Google Scholar 

  7. Anushya G, Freeda TH. Growth inhibition of natural foods on calcium hydrogen phosphate dihydrate crystals. Jordan J Phys. 2018;11:91–9.

    Google Scholar 

  8. Joshi VS, Joshi MJ. FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals. Cryst Res Technol. 2003;38:817–21.

    Article  CAS  Google Scholar 

  9. Parekh BB, Joshi MJ. Growth and characterization of gel grown calcium pyrophosphate tetrahydrate crystals. Cryst Res Technol. 2007;42:127–32.

    Article  CAS  Google Scholar 

  10. Mott NF, Austin IG. Polarons in crystalline and noncrystalline materials. Adv Phys. 1969;18:41–102.

    Article  Google Scholar 

  11. Lechevallier E, Saussine C, Traxer O. Ureteroscopy for upper urinary tract stones. Prog Urol. 2008;18:912–6.

    Article  CAS  Google Scholar 

  12. Delius M. This month in Investigative Urology: effect of extracorporeal shock waves on the kidney. J Urol. 1988;140:390.

    Article  CAS  Google Scholar 

  13. Abe T, Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H. Outcomes of shockwave lithotripsy for upper urinary-tract stones: a large-scale study at a single institution. J Endourol. 2005;19:768–73.

    Article  Google Scholar 

  14. Chacko J, Moore M, Sankey N, Chandhoke PS. Does a Slower Treatment Rate Impact the Efficacy of Extracorporeal Shock Wave Lithotripsy for Solitary Kidney or Ureteral Stones? J Urol. 2006;175:130.

    Article  Google Scholar 

  15. Bichler KH. Urinary infection stones. Int J Antimicrob Ag. 2002;19:488–98.

    Article  CAS  Google Scholar 

  16. Prywer J, Torzewska A. Bacterially induced struvite growth from synthetic urine: experimental and theoretical characterization of crystal morphology. Cryst Growth Des. 2009;9:3538–43.

    Article  CAS  Google Scholar 

  17. Wall I, Tiselius HG. Studies on the crystallization of magnesium ammonium phosphate in urine. Urol Res. 1990;18:401–6.

    Article  CAS  Google Scholar 

  18. Wang YH. Citrate and urease-induced crystallization in synthetic and human urine. Urol Res. 1993;21:109–15.

    Article  CAS  Google Scholar 

  19. Mclean RJC, Nickel JC. Glycosaminoglycans and struvite calculi. World J Urol. 1994;12:49–51.

    Article  CAS  Google Scholar 

  20. Romanowski Z, Kempisty P, Prywer J, Krukowski S, Torzewska A. Density functional theory determination of structural and electronic properties of struvite. J Phys Chem A. 2010;114:7800–8.

    Article  CAS  Google Scholar 

  21. Chauhan CK, Joshi MJ. In vitro crystallization characterization and growth inhibition study of urinary type struvite crystal. J Cryst Growth. 2013;362:330–7.

    Article  CAS  Google Scholar 

  22. Srinivas K, Sirdeshmukh DB. X-ray determination of the mean amplitude of vibration and debye temperatures of HRS-5 (T1Br0.4eIo.ea). Cryst Res Technol. 1986;21:157.

    Article  CAS  Google Scholar 

  23. Freeda TH, Mahadevan C. Lattice variation and thermal parameters of gel grown KDP crystals added with some ammonium compounds. Pramana J Phys. 2001;57:829–36.

    Article  CAS  Google Scholar 

  24. Mahadevan CK. Thermal parameters of MgSO4·7H2O and NiSO4·7H2O crystals added with urea and thiourea. Physica B. 2008;403:3164–7.

    Article  CAS  Google Scholar 

  25. Sahaya Sajan X, Mahadevan C. Lattice variation and thermal parameters of pure and impurity- added calcium tartrate tetrahydrate crystals. J Mater Sci. 2004;39:4627–9.

    Article  Google Scholar 

  26. Mariammal RN, Susila VM, Ramachand K. On the Debye–Waller factor and Debye temperature of CdO nanoparticles. Cryst Res Technol. 2011;46:979–85.

    CAS  Google Scholar 

  27. Talwar IM, Yagyik Y, Lal N. Thermally stimulated polarization studies of kidney stones. Biomaterials. 1991;12:518–20.

    Article  CAS  Google Scholar 

  28. Yagyik Y, Lal N, Talwar IM, Jeth RK. Electrical conductivity of kidney stones. Biomaterials. 1989;10:281–5.

    Article  CAS  Google Scholar 

  29. Anushya, G, Freeda, TH. Effect of Green Tea on the Growth of Brushite crystals. Int. J. Lat. Tre. Res. Dev. 2018;139–143.

  30. Anushya G, Freeda TH. Structural and optical properties of cetapin XR and mathumagachooranam added struvite crystals. Int J Appl Sci Eng Technol. 2018;6:3095–101.

    Google Scholar 

  31. Cromer DT, Mann JB. X-ray scattering factors computed from numerical Hartree–Fock wave functions. Acta Cryst A. 1968;24:321–4.

    Article  CAS  Google Scholar 

  32. Ibers JA, Hamilton WC. International tables for X-ray crystallography, vol. IV. Birmingham: Kynoch Press; 1974.

    Google Scholar 

  33. Warren B. X-ray diffraction. California: Addison-Wesley; 1969.

    Google Scholar 

  34. Wilson AJC. Determination of absolute from relative x-ray intensity data. Nature. 1942;150:151–2.

    CAS  Google Scholar 

  35. Neelakanda Pillai N, Mahadevan CK. X-ray diffraction studies on (NaCl)x (NaBr)y-x(NaI)1-y crystals. Phys B. 2008;403:2168–72.

    Article  CAS  Google Scholar 

  36. Benson GC, Gill EK. Table of integral functions related to Debye–Waller Factor. Ottawa: National Research Council of Canada; 1966.

    Google Scholar 

  37. Haldik J. Physics of electrolytes. New York: Academic Press; 1972.

    Google Scholar 

  38. Lesly Fathima A, Neelakanda Pillai N. Debye–Waller factors and Debye temperatures of KClxBr1–x mixed crystals grown from aqueous solution. Arch Appl Sci Res. 2013;5:203–13.

    Google Scholar 

  39. Ahtee M, Pesonen A, Salmo P, Inkinen Z. Vibrational Excess Entropy of Equimolar KCl-KBr Solid Solution. Naturforsch. 1970;25a:1761–2.

    Article  Google Scholar 

  40. Venudhar YC, Iyengar Leela, Krishna Rao KV. Thermal expansion and Debye temperatures of KCl-KBr mixed crystals by an X-ray method. J Mater Sci. 1986;21:110–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Anushya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anushya, G., Freeda, T.H. Thermal parameters of undoped and medicines doped calcium hydrogen phosphate dihydrate and magnesium ammonium phosphate hexahydrate crystals. J Therm Anal Calorim 146, 1983–1989 (2021). https://doi.org/10.1007/s10973-021-10638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10638-0

Keywords

Navigation