Skip to main content
Log in

Effect of Sr2+ on growth and properties of ammonium dihydrogen phosphate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ammonium dihydrogen phosphate (ADP) crystals have wide range of non-linear optical applications. The doping of bivalent impurity like strontium can strongly retard growth rate and modify properties of ADP crystals. The pure and 0.5 mol% Sr2+ doped ADP crystals are grown by using the slow evaporation technique at room temperature. The powder XRD indicates the single phase nature of both samples. The FT-IR spectra indicate the shifting of absorption peaks for the doped sample. The thermal study indicates that the doped sample is thermally less stable than the pure sample. The EDAX study confirms the presence of strontium in the doped sample. The UV–Vis spectra indicate slight decrement in the transmittance due Sr2+ doping. The Wemple–DiDomenico model is satisfactorily applied to dispersive behaviour of refractive index. The dielectric constant and dielectric loss decreases with frequency increased. The Jonscher’s power law is studied for A.C. conductivity. The Nyquist plot and complex modulus plot exhibits two semicircles for pure ADP due to grain and grain boundary contributions and the same plots show single semicircle for doped ADP due to grain contribution only. The stretch exponent (β) is obtained less than unity, indicates the non-Debye type relaxation process. The second harmonic generation efficiency of fundamental laser beam is found to be 2.07 and 1.54 times higher than the pure KDP for pure ADP and Sr2+ doped ADP, respectively. The Z-scan study reveals the self focusing and reverses saturable absorption kind of nonlinear response for both samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X. Feng, L. Zhu, F. Wang, W. Han, Z. Wang, Q. Zhu, X. Sun, RSC Adv. 3, 1–8 (2013)

  2. S. Ji, F. Wang, L. Zhu, X. Xu, Z. Wang, X. Sun, Sci. Rep. 3, 16059 (2013)

    Google Scholar 

  3. A. Chen, E. Murphy, Broadband Optical Modulators: Science, Technology and Applications (CRC Press, Boca Raton, 2011)

    Google Scholar 

  4. J.F. Ready, Industrial Applications of Lasers, 1st edn. (Academic Press, New York, 1978)

    Google Scholar 

  5. P. Rajesh, P. Ramasamy, B. Kumar, G. Bhagavannarayana, Physica B 405, 2401–2406 (2010)

    CAS  Google Scholar 

  6. Y. Asakuma, Q. Li, H. Ang Ming, M. Tade, K. Maeda, K. Fukai, Appl. Surf. Sci. 254, 4524–4530 (2008)

    CAS  Google Scholar 

  7. D. Xu, D. Xue, H. Ratajczak, J. Mol. Struct. 740, 37 (2005)

    CAS  Google Scholar 

  8. P. Punitha, S. Prathiban, S. Senthilkumar, H. Anandalakshmi, S.C. Mojumdar, J. Therm. Anal. Calorim. 119, 871–878 (2015)

    CAS  Google Scholar 

  9. M. Anis, S.S. Hussaini, M. Shkir, S. Alfaity, M.I. Baig, Optik 157, 592–596 (2018)

    CAS  Google Scholar 

  10. B.M. Amala, M.R. Bindu, Int. Res. J. Eng. Technol. 4, 315–318 (2017)

    Google Scholar 

  11. M. Sharon, A.K. Kalia, J. Solid. Stat. Chem 21, 171–183 (1977)

    CAS  Google Scholar 

  12. T.F. Murray, R.H. Dungan, Cerem. Ind. 82, 74 (1964)

  13. K.C. Misra, Introduction to Geochemistry: Principles and Applications (Wiley, Hoboken, 2012)

    Google Scholar 

  14. W.M. White, Geochemistry (Wiley, Hoboken, 2013)

    Google Scholar 

  15. P. Singh, M. Hasmuddin, N. Vijayan, M.M. Abdullah, M. Shakir, M.A. Wahab, Optik 124, 1609–1613 (2013)

  16. D. Xu, D. Xue, J. Cryst. Growth 286, 108–113 (2006)

    CAS  Google Scholar 

  17. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

  18. P. Rajesh, P. Ramasamy, G. Bhagvananarayana, J. Cryst. Growth 311, 4069–4075 (2009)

    CAS  Google Scholar 

  19. C. Sun, D. Xu, D. Xue, CrystEngComm 15, 7783 (2013)

    CAS  Google Scholar 

  20. E. Torijano, R.A. Vargas, J.E. Diosa, B.E. Mellander, Phys. Status Solidi (b) 659, 220 (2000)

    Google Scholar 

  21. V. Niraimathi, V. Aroulmoji, P. Anbarasan, G. Rajarajan, J. Optelectron. Adv. Mater. 17, 205–210 (2015)

    CAS  Google Scholar 

  22. P. Rajesh, P. Ramasamy, C.K. Mahadevan, Mater. Lett. 64, 1140–1143 (2010)

    CAS  Google Scholar 

  23. J.H. Joshi, S. Kalainathan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.12.005

    Article  Google Scholar 

  24. C. Sabari Girisun, S. Dhanuskodi, Cryst. Res. Technol. 44, 1297 (2009)

    Google Scholar 

  25. S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3, 1338–1350 (1971)

    Google Scholar 

  26. A.A.M. Farag, M. Abdul Rafea, N. Roushdy, O. El-Shazly, E.F. El-wahidy, J. Alloy. Compd. 621, 434–440 (2015)

    CAS  Google Scholar 

  27. R.H. French, J. Am. Cerem. Soc. 83, 2117–2146 (2000)

    CAS  Google Scholar 

  28. M.F. Al-Mudhaffer, J. Basrah Res. 36, 31–38 (2010)

    Google Scholar 

  29. J. Biecerano, S.R. Oyshinesky, J. Non Cryst. Sol. 74, 75 (1985)

    Google Scholar 

  30. S. Suresh, Int. J. Appl. Inform. Syst. 4, 11–14 (2012)

    Google Scholar 

  31. D. Xue, K. Kitamura, Solid. Stat. Commun. 122, 537–541 (2000)

    Google Scholar 

  32. R. Murugeshan, in Electricity and Magnetism, 7th edn. (S. Chand, New Delhi, 2008), p. 300

    Google Scholar 

  33. http://www.physics.usyd.edu.au/~sgb/Emag_Lecture/em2-05.pdf

  34. L.R. Dalton, P. Gunter, M. Jazbinsek, O. Kwon, P. Sullivan, Organic Electro-Optics and Photonics: Moleculues, Polymers and Crystals. 1st edn. (Cambridge University press, Cambridge, 2015)

    Google Scholar 

  35. D. Zion, S. Devarajan, T. Arunachalam, J. Cryst. Proc. Technol. 3, 5–11 (2013)

    CAS  Google Scholar 

  36. R. Anadakumar, R. Chandramani, Ind. J. Pure Appl. Phys. 43, 123–128 (2000)

    Google Scholar 

  37. T.A. Eremina, N.N. Eremia, V.A. Kuznetsov, N.G. Furmanova, V.S. Urusov, Kristallografiya 47, 819 (2000)

    Google Scholar 

  38. L. Zhu, X.Y. Gun, Q.H. Zhang, B.A. Liu, M.X. Xu, L.S. Zhang, X.G. Xu, Chin. Phys. Lett. 32, 057201 (2015)

    Google Scholar 

  39. M. Meena, C.K. Mahadevan, Cryst. Res. Technol. 43, 166–172 (2008)

    CAS  Google Scholar 

  40. K. Funke, Prog. Sol. State. Chem. 22, 111 (1993)

    CAS  Google Scholar 

  41. A.K. Jonscher, Nature 267, 676 (1997)

    Google Scholar 

  42. J.P. Haung, K.W. Yu, New Nonlinear Optical Materials: Theoretical Research, 1st edn. (Nova Science Publisher, Inc., New York, 2007)

    Google Scholar 

  43. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, Phase Trans. 8, 3–17 (2015)

  44. D.K. Sharma, R. Kumar, R. Rai, S. Sharma, A.L. Kholkin, J. Adv. Dielectr. 2, 1–12 (2012)

    Google Scholar 

  45. J.H. Joshi, K.P. Dixit, M.J. Joshi, K.D. Parikh, AIP Conf. Proc. 1728, 020219 (2015)

    Google Scholar 

  46. H.O. Jethva, M.J. Joshi, D.K. Kanchan, Int. J. Eng. Innov. Technol. 5, 99 (2015)

    Google Scholar 

  47. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63–73 (2017)

    CAS  Google Scholar 

  48. J.Ross MacDonald, Impedance Spectroscopy: Theory, Experiment and Applications, 1st edn. (Wiley, New York, 1987)

    Google Scholar 

  49. S.P.S. Badwal, B.V.R .Chowdari, S. Radhakrishna eds. Solid State Ionic Devices (World Scientific, Singapore, 1988)

    Google Scholar 

  50. D.C. Sinclair, Bol. Soc. Esp. Cerem. Vidrio 34, 55–65 (1995)

    CAS  Google Scholar 

  51. A. Mohapatra, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 26, 3035–3043 (2015)

    CAS  Google Scholar 

  52. S.A. Jawad, A.S. Abu-surrah, M. Maghrabi, Z. Khattari, M.-Al Obeid, J. Mater. Sci. 46, 2748–2754 (2011)

    CAS  Google Scholar 

  53. A. Zaafouri, M. Magdiche, L. Mechi, M. Gargouri, Ionics 20 1255–1266 (2014)

    CAS  Google Scholar 

  54. M.P. Dasari, K.S.S. Rao, P.M. Krishna, G.G. Krishna, Acta. Phys. Pol. A 119, 387–394 (2013)

    Google Scholar 

  55. D. Bharath, S. Kalainathan, Opt. Laser Technol. 59, 24–31 (2014)

    Google Scholar 

  56. E.W. Van Stryland, M. Sheik-Bahae, Char. Technol. Tabul. Org. Online Mater. 18, 655–692 (1998)

    Google Scholar 

  57. R.A. Kumar, R.E. Vizhi, N. Vijayan, G. Bharavannarayanan, D.R. Babu, J. Pure Appl. Ind. Phys. 1, 61–67 (2010)

    Google Scholar 

  58. V. Natarajan, T. Sivanesan, S. Pandi, Ind. J. Sci. Technol. 3, 656–658 (2010)

    CAS  Google Scholar 

  59. P. Shreeramana Althal, P. Prem Kiran, D. Narayana Rao, J. Non Opt. Phys. Mater. 9(2), 217–225 (2000)

    Google Scholar 

  60. X. Dongfeng, Z. Siyuan, J. Shanghai Univ. 3(2), 172–174 (1999)

    Google Scholar 

  61. M. Anis, M.D. Shirsat, G. Muley, S.S. Hussaini, Physica B 449 (2014) 61–66

    CAS  Google Scholar 

  62. S. Selvakumar, S.B. Maria, S.A. Babu, S. Ramalingam, A.L. Rajesh, J. Mol. Struct. 1125, 1–11 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to UGC for financial assistance under SAP DRS–II and DST under FIST and Prof. H. H. Joshi (Head, Department of Physics, Saurashtra University, Rajkot) for his encouragement and support. The author (JHJ) is highly thankful to Education Department, Government of Gujarat for allowing him to carry out such research activity. The authors are thankful to Ms. Avani Bhatt, Ms. Bency John and Ms. Ankita Vyas for their help in growth of crystals. The authors are thankful to Ms. Mahatta Oza for her help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Joshi or K. D. Parikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, J.H., Dixit, K.P., Parikh, K.D. et al. Effect of Sr2+ on growth and properties of ammonium dihydrogen phosphate single crystal. J Mater Sci: Mater Electron 29, 5837–5852 (2018). https://doi.org/10.1007/s10854-018-8556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8556-8

Navigation