Skip to main content
Log in

Effects of short-term high-temperature calcinations on the physico-chemical and mineralogical properties of Ca-bentonites from Ünye (Ordu, NE Turkey)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three Ca-bentonite samples from Ünye (NE Turkey) were calcined up to 1000 °C with 200 °C increments at 25 min. The physico-chemical and mineralogical effects of high-temperature loadings were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) and loss on ignition (LOI) analysis. The results of the experiments show that the dehydration up to 400 °C does not alter the properties of Ca-bentonites significantly; however, the endothermic reactions due to dehydroxylation between 400 and 800 °C cause the deformation in the Ca-smectite crystal structure revealed by the collapse of the basal reflection from 1.4 to 1.0 nm and the gradual disappearance of OH stretching of structural hydroxyl groups and decrease in specific surface area and the closure of micropores. By calcination at 1000 °C, the specific surface area reaches the minima of 1.33–2.05 m2 g−1 for all the samples, and the structure of Ca-smectite is almost completely decomposed for CaB2 and CaB3, however, partially decomposed for CaB1 due to incomplete dehydroxylation stage. The crystallinity of opal-CT intensifies, and the formation of amorphous silica phases is promoted for all samples at 1000 °C; however, the formation of mullite is enhanced only for CaB2 and CaB3. The sintering effect is revealed as much larger aggregates with more rounded morphologies. It is also determined that the calcination up to 1000 °C does not affect the mesoporous characteristics of Ca-bentonite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Millot G (1970) Geology of clays Weathering, Sedimentology Geochemistry, Springer. Paris. P. 443.

  2. Grim RE, Güven N. Bentonites: geology, mineralogy, properties and uses. developments in sedimentology 34, Elsevier, Amsterdam; 1978, 256

  3. Fisher RV, Schmincke HU. Pyroclastic rocks. Springer. Berlin 1984; 472.

  4. Chamley H. Clay Sedimentology. Berlin: Springer; 1989. p. 623.

    Book  Google Scholar 

  5. Tripathy S, Sridharan A, Schanz T. Swelling pressures of compacted bentonites from diffuse double layer theory. Can Geotech J. 2004;41:437–50.

    Article  CAS  Google Scholar 

  6. Bharat TV, Sivapullaiah PV, Allam MM. Novel procedure for the estimation of swelling pressures of compacted bentonites based on diffuse double layer theory. Environ Earth Sci. 2013;70:303–14.

    Article  Google Scholar 

  7. Miyoshi Y, Ishibashi J, Faure K, Maeto K, Matsukura S, Omura A, Yamanaka T. Mg-rich clay mineral formation associated with marine shallow-water hydrothermal activity in an arc volcanic caldera setting. Chem Geol. 2013;355:28–44. https://doi.org/10.1016/j.chemgeo.2013.05.033.

    Article  CAS  Google Scholar 

  8. Gapak Y, Das G, Yerramshetty U, Bharat TV. Laboratory determination of volumetric shrinkage behavior of bentonites: A critical appraisal. Appl Clay Sci. 2017;135:554–66. https://doi.org/10.1016/j.clay.2016.10.038.

    Article  CAS  Google Scholar 

  9. Clem AG, Doehler RW. Industrial applications of bentonite. Clay Clay Miner. 1961;10(1):272–83. https://doi.org/10.1346/ccmm.1961.0100122.

    Article  Google Scholar 

  10. Dellisanti F, Valdrè G. Study of structural properties of ion treated and mechanically deformed commercial bentonite. Appl Clay Sci. 2005;28:233–44.

    Article  CAS  Google Scholar 

  11. Christidis GE, Makri P. Effect of grinding time on particle size and colour properties of talc and smectite industrial fillers. Abstr Euroclay. 2003:65–66.

  12. Filipovic-Petrovic L, Kostic-Gvozdenovic L, Eric-Antonic S. The effects of the fine grinding on the physicochemical properties and thermal behaviour of bentonite clay. J Serb Chem Soc. 2002;67(11):753–60.

    Article  CAS  Google Scholar 

  13. Bonetti E, Campari EG, Pasquini L, Sampaolesi E, Valdre G. Structural and elastic properties of nanocrystalline iron and nickel prepared by ball milling in controlled thermodynamic environment. Mater Sci Forum. 1998;269–272:1005–10.

    Article  Google Scholar 

  14. Volzone C, Aglietti EF, Scian AN, Porto Lopez JM. Effect of induced structural modifications on the physicochemical behaviour of bentonite. Appl Clay Sci. 1987;2:97–104.

    Article  CAS  Google Scholar 

  15. Novak I, Cicel B, Jakubekova D. Changes in the texture of bentonite occurring during vibration grinding and after aging. Silikáty. 1982;26(1):15–20.

    Google Scholar 

  16. Ḉiḉel B, Kranz G. Mechanism of montmorillonite structure degradation by percussive grinding. Clay Miner. 1981;16:151–62.

    Article  Google Scholar 

  17. Mingelgrin U, Kliger L, Gal M, Saltzman S. The effect of grinding on the structure and behaviour of bentonites. Clays Clay Miner. 1978;26:299–307.

    Article  CAS  Google Scholar 

  18. Saltzman S, Yariv S. IR and X-ray study of parathionmontmorillonite sorption complexes. Soil Sci Soc of Am J. 1976;40:34–8.

    Article  CAS  Google Scholar 

  19. Köller E, Hofmann U, Scharrer E, Frühauf K. Über den Einfluss der Mahlung auf Kaolin und Bentonit. Ber Dtsch Keram Ges. 1969;37(11):493–503.

    Google Scholar 

  20. Chitnis SR, Sharma MM. Industrial applications of acid-treated clays as catalysts. React Functional Polym. 1997;32:93115.

    Article  Google Scholar 

  21. Komadel P. Chemically modified smectites. Clay Miner. 2003;38:127–38.

    Article  CAS  Google Scholar 

  22. Kaufhold S, Decher A. Natural acidic bentonites from the island of Milos. Greece ZAG. 2003;49:712.

    Google Scholar 

  23. Bala P, Samantaray BK, Srivastava SK. Dehydration transformation in Ca montmorillonite. Bull Mater Sci. 2000;23(1):61–7. https://doi.org/10.1007/bf02708614.

    Article  CAS  Google Scholar 

  24. Sarıkaya Y, Önal M, Baran B, Alemdaroğlu T. The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays Clay Miner. 2000;48:557–62.

    Article  Google Scholar 

  25. Dellisanti F, Minguzzi V, Valdre G. Thermal and structural properties of Ca-rich montmorillonite mechanically deformed by compaction and shear. Appl Clay Sci. 2006;31:282–9.

    Article  CAS  Google Scholar 

  26. Abdioğlu E, Arslan M. Mineralogy, geochemistry and genesis of bentonites of the Ordu area. NE Turkey Clay Miner. 2005;40:131–51.

    Article  Google Scholar 

  27. Karakaya MÇ, Karakaya N, Bakır S. Some properties and potential applications of the Na- and Ca-bentonites of Ordu (N.E. Turkey). Appl Clay Sci. 2011;54:159–65.

    Article  CAS  Google Scholar 

  28. ASTM D4318–10.Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, Annual Book of ASTM Std. ASTM Int.West Conshohocken, PA.2010.

  29. Brindley GW. Quantitative X-Ray Analyses of Clays. In: Brindley, G. W., Brown, G., (Eds), Crystal structures of clay minerals and their x-ray ıdentification. Miner Soci Monograph. 1980;5:411–438.

  30. Jackson ML. Soil Chemical Analysis-Advanced Course, 2nd Edition. Published by the Author, Madison, Wisconsin, U.S.A. 1979:895.

  31. Moore DM, Reynolds JR. X-Ray Diffraction and the Identification and Analysis of Clay Miner. Oxford University Press. 1989:332.

  32. Thorez J. Practical identification of clay miner. Lelotte: Dison, Belgium; 1976. p. 89.

    Google Scholar 

  33. Chen FH. Foundations on expansive soils. Amsterdam: Elsevier Scientific Pub Co; 1975.

    Google Scholar 

  34. Rintoul L, Panayiotou H, Kokot S, George G, Cash G, Frost R, Fredericks P. Fourier transform infrared spectrometry: a versatile technique for real world samples. Analyst. 1998;123(4):571–7. https://doi.org/10.1039/a707111f.

    Article  CAS  Google Scholar 

  35. Klinkenberg M, Dohrmann R, Kaufhold S, Stanjek H. A new method for identifying Wyoming bentonite by ATR-FTIR. Appl Clay Sci. 2006;33(3–4):195–206. https://doi.org/10.1016/j.clay.2006.05.003.

    Article  CAS  Google Scholar 

  36. Souza GP, Sousa SJG, Terrones LAH, Holanda JNF. Mineralogical analysis of Brazilian ceramic sedimentary clays used in red ceramic. Ceramica. 2005;51:381–6.

    Google Scholar 

  37. Wu PX (2004) Clay mineral materials and environmental restoration. Chemical Ind Press. Beijing:32.

  38. Hillier S, Lumsdon DG. Distinguishing opaline silica from cristobalite in bentonites: a practical procedure and perspective based on NaOH dissolution. Clay Miner. 2008;43:477–86.

    Article  CAS  Google Scholar 

  39. Elzea JM, Odom IE, Miles WJ. Distinguishing well-ordered opal-CT and opal-C from high-temperature cristobalite by X-ray diffraction. Anal Chim Acta. 1994;286:107–16.

    Article  CAS  Google Scholar 

  40. Gridi-Bennadji F, Lecomte-Nana G, Mayet R, Bonnet JP, Rossignol S. Effect of organic modification on the thermal transformations of abentonite during sintering up to 1250 °C. Bull Mater Sci. 2015;38:357–63.

    Article  CAS  Google Scholar 

  41. Herzberg G. Molecular spectra and molecular structure. New York: I. SPectra of Dİatomic Molecules. Van Nostrand Co., Inc.; 1950. p. 658.

    Google Scholar 

  42. Hunt GR, Salisbury JW. Visible and near-infrared spectra of minerals and rocks—I. Silicate Miner Mod Geol. 1970;1:283.

    CAS  Google Scholar 

  43. Russell JD, Fraser AR. Infrared Methods. In: Wilson, M.J., Ed. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, Chapman & Hall, London; 1994: 11–67.

  44. Reddy TR, Kaneko S, Endo T, Reddy SL. Spectroscopic characterization of bentonite. J Lasers, Opt Photonics. 2017;04:03. https://doi.org/10.4172/2469-410x.1000171.

    Article  Google Scholar 

  45. Korichi S, Elias A, Mefti A. Characterization of smectite after acid activation with microwave irradiation. Appl Clay Sci. 2009;42(3–4):432–8. https://doi.org/10.1016/j.clay.2008.04.014.

    Article  CAS  Google Scholar 

  46. Farmer VC in: V.C. Farmer (Ed.), Infrared Spectra of Minerals, Miner Soc. London, UK. 1974: 331.

  47. Sarı YM, Kalpaklı Y, Pişkin S. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. J Therm Anal Calorim. 2013;114(3):1191–9. https://doi.org/10.1007/s10973-013-3152-x.

    Article  CAS  Google Scholar 

  48. Davarcıoğlu B, Kayalı R, Gürel A. Araplı Yeşilhisar-Kayseri (Orta Anadolu bölgesi) killerinin FTIR spektroskopisi ile incelenmesi ve karakterizasyonu. Kibited. 2009;1(3):163–73.

    Google Scholar 

  49. Davarcıoğlu B. Investigation of central Anatolian region Nigde-Dikilitas (Turkey) clays by FTIR spectroscopy. Mater Technol. 2010;62:55–60.

    Google Scholar 

  50. Nones J, Nones J, Riella HG, Poli A, Trentin AG, Kuhnen NC. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death. Mater Sci Eng: C. 2015;55:530–7.

    Article  CAS  Google Scholar 

  51. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der Waal Adsorption of Gases. J Am Chem Soc. 1940;62(7):1723–32.

    Article  CAS  Google Scholar 

  52. Önal M, Sarıkaya Y. Thermal behavior of a bentonite. J Therm Anal Calorim. 2007;90:167–72.

    Article  Google Scholar 

  53. Bayram H, Önal M, Yılmaz H, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Cal. 2010;101:873–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this manuscript would like to thank Ünye Mining Industry Trade Limited Comp., who supplied the CaB samples and created collaboration on this scientific subject. The first two authors wish to acknowledge the efficient use of research facilities at Research and Application Centre in Mugla Sitki Kocman University. This manuscript is a M.Sc. thesis study of the first author. The editor and the reviewers of this contribution are highly acknowledged due to their invaluable comments which significantly improved the quality of the manuscript. This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Öykü Ataytür.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataytür, Ö., Küçükuysal, C., Güngör, C. et al. Effects of short-term high-temperature calcinations on the physico-chemical and mineralogical properties of Ca-bentonites from Ünye (Ordu, NE Turkey). J Therm Anal Calorim 147, 2091–2099 (2022). https://doi.org/10.1007/s10973-021-10626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10626-4

Keywords

Navigation