Skip to main content
Log in

Thermal, structural and ethylene adsorption properties of Ag-, Cu- and Fe-modified bentonite from Turkey

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal and structural properties of bentonite from Ünye (Turkey) and that of Ag-, Cu- and Fe-modified forms were investigated by differential thermal analysis, thermogravimetric analysis, X-ray diffraction and surface area measurement methods. Simultaneous TG–DTA curves of all clay samples were obtained at three different heating rates 10, 15 and 20 °C min−1 over the temperature range 25–1000 °C. Adsorption properties of C2H4 for all bentonite samples were obtained at 273 K and pressures up to 100 kPa. Uptake of C2H4 increased as Ag-B > Cu-B > B > Fe-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murray HH. Applied clay mineralogy: occurrences, processing, and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Amsterdam: Elsevier; 2007.

    Google Scholar 

  2. Grim RE, Güven N. Bentonites, geology, mineralogy, properties and uses: development in sedimentology. Amsterdam: Elsevier; 1978.

    Google Scholar 

  3. Murray HH. Applied clay mineralogy today and tomorrow. Clay Miner. 1999;34:39–49.

    Article  CAS  Google Scholar 

  4. Grimshaw RW. The chem and phys of clays. Virginia: TechBooks, Fairfax; 1971.

    Google Scholar 

  5. Salveit ME. Effect of ethylene on quality of fresh fruits and vegetables. Posthar-vest Biol Tech. 1999;15:279–92.

    Article  Google Scholar 

  6. Vermeiren L, Devlieghere F, Van BM, Kruijf ND, Debevere J. Developments in the active packaging of foods. Trends Food Sci Tech. 1999;10(3):77–86.

    Article  CAS  Google Scholar 

  7. Yam KL, editor. The Wiley encyclopedia of packaging technology. New York: Wiley; 2009.

    Google Scholar 

  8. Cağlar B, Afsin B, Tabak A, Eren E. Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chem Eng J. 2009;149:242–8.

    Article  Google Scholar 

  9. Adams JM. Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts-a review. Appl Clay Sci. 1987;2(4):309–42.

    Article  CAS  Google Scholar 

  10. Volzone C, Ortiga J. Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf Environ Prot. 2004;82:170–4.

    Article  CAS  Google Scholar 

  11. Novak I, Cicel B. Dissolution of smectites in hydrochloric acid; II, Dissolution rate as a function of crystallochemical composition. Clays Clay Miner. 1978;26:341–4.

    Article  CAS  Google Scholar 

  12. Christidis GE, Scott PW, Dunham AC. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl Clay Sci. 1997;12:329–47.

    Article  CAS  Google Scholar 

  13. Venaruzzo JL, Volzone C, Rueda ML, Ortiga J. Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases. Micropor Mesopor Mater. 2002;56:73–80.

    Article  CAS  Google Scholar 

  14. Breen C, Zahoor FD, Madejova J, Komadel P. Characterization and catalytic activity of acid-treated, size-fractionated smectites. J Phys Chem B. 1997;101:5324–31.

    Article  CAS  Google Scholar 

  15. Eren E, Afsin B. An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. J Hazard Mater. 2008;151:682–91.

    Article  CAS  Google Scholar 

  16. Temuujina J, Jadambaab TS, Burmaaa G, Erdenechimegb SH, Amarsanaab J, MacKenzie KJD. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int. 2004;30:251–5.

    Article  Google Scholar 

  17. Tyagi B, Chudasama CD, Jasra RV. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A. 2006;64:273–8.

    Article  Google Scholar 

  18. Önal M, Sarıkaya Y, Alemdaroğlu T, Bozdoğan İ. The effect of acid activation on some physicochemical properties of a bentonite. Turk J Chem. 2002;26:409–16.

    Google Scholar 

  19. Volzone C, Porto LJM, Pereira E. Acid activation on smectitic material: I. Structural analysis. Rev Latinoam Ing Quím Appl. 1986;16:205–15.

    CAS  Google Scholar 

  20. Steudel A, Batenburg LF, Fischer HR, Weidler PG, Emmerich K. Alteration of non-swelling clay minerals and magadiite by acid activation. Appl Clay Sci. 2009;44:95–104.

    Article  CAS  Google Scholar 

  21. Ravichandran J, Sivasankar B. Properties of catalytic activity of acid-modified montmorillonite and vermiculite. Clays Clay Miner. 1997;45:584–858.

    Article  Google Scholar 

  22. Gates WP, Anderson JS, Raven MD, Churchman GJ. Mineralogy of a bentonite from Miles, Queenstand, Australia and characterization of its acid activation products. Appl Clay Sci. 2002;22:189–97.

    Article  Google Scholar 

  23. Jovanovic N, Janackovic J. Pore structure and adsorption properties of an acid-activated bentonite. Appl Clay Sci. 1991;6:59–68.

    Article  CAS  Google Scholar 

  24. Vukovic Z, Milutonovic A, Rozic L, Rosic A, Nedic Z, Jovanovic D. The influence of acid treatment on the composition of bentonite. Clays Clay Miner. 2006;54:697–702.

    Article  CAS  Google Scholar 

  25. Yezeña H, Jorge B, Abel G, Erika G. Study of the structural modifications in activated clays by Mössbauer spectroscopy and X-ray diffractometry. Hyperfine Interact. 2007;175:23–8.

    Article  Google Scholar 

  26. Krishna GB, Susmita SG. Adsorption of Fe(III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption. 2006;12:185–204.

    Article  Google Scholar 

  27. Gonzalez JDL, Deitz VR. Surface changes in an original and activated bentonite. J Res Natl Bur Stand. 1952;48:325–33.

    Article  Google Scholar 

  28. Yıldız N, Çalımlı A. Alteration of three turkish bentonites by treatment with Na2CO3 and H2SO4. Turk J Chem. 2002;26:393–402.

    Google Scholar 

  29. Kumar P, Jasra RV, Bhat TSG. Evaluation of porosity and surface acidity in montmorillonite clay on acid activation. Ind Eng Chem Res. 1995;34:1440–8.

    Article  CAS  Google Scholar 

  30. Komadel P, Schmidt D, Madejová J, Èièel B. Alteration of smectites by treatments with hydrochloric acid and sodium. Carbonate solutions. Appl Clay Sci. 1990;5:113–22.

    Article  CAS  Google Scholar 

  31. Nguetnkam JP, Kamga R, Villieras E, et al. Assessment of the surface areas of silica and clay in acid-leached clay materials using concepts of adsorption on heterogeneous surfaces. J Colloid Interf Sci. 2005;287:552–60.

    Article  Google Scholar 

  32. Srasra E, Bergaya F, Van DH, Arguib NK. Surface properties of an activated bentonite. Decolorization of rape-seed oil. Appl Clay Sci. 1989;4:411–21.

    Article  CAS  Google Scholar 

  33. Jozefaciuk G, Bowanko G. Effect of acid and alkali treatment on surface areas and adsorption energies of selected minerals. Clays Clay Miner. 2002;50:771–83.

    Article  CAS  Google Scholar 

  34. Pradas EG, Sánchez MV, Campo AG. Influence of the physical-chemistry properties of an acid-activated bentonite in the bleaching of olive oil. J Chem Technol Biotechnol. 1993;57:213–6.

    Article  Google Scholar 

  35. Kotla GA, Novak I, El-Tawil SZ, El-Barawy KA. Evaluation of bleaching capacity of acid-leached bentonites. J Appl Chem Biotechnol. 1976;26:355–60.

    Google Scholar 

  36. Falaras P, Kovanis L, Lezou F, Seiragakis G. Cotton seed oil bleaching by acid-activated montmorillonite. Clay Miner. 1999;34:221–32.

    Article  CAS  Google Scholar 

  37. Francisco R, Valenzuela D, de Pérsio SS. Studies on the acid activation of brazilian smectitic clays. Quim Nova. 2001;24:345–53.

    Google Scholar 

  38. Cho SH, Park JH, Han SS, Kim JN. Comparison of AgNO3/clay and AgNO3/ALSG sorbent for ethylene separation. Adsorption. 2005;11:145–9.

    Article  Google Scholar 

  39. Choundry NV, Kumar P, Bhat TS, Cho SH, Han SS, Kim JN. Adsorption of light hydrocarbon gases on alkene-selective adsorbent. Ind Eng Chem. 2002;41:2728–34.

    Article  Google Scholar 

  40. Saini VK, Pinto M, Pires J. High pressure adsorption studies of ethane and ethylene on clay-based adsorbent materials. Sep Sci Technol. 2011;46:137–46.

    Article  CAS  Google Scholar 

  41. Youngjan S (2012) Ethylene adsorption on modified bentonite. Master Thesis, Department of Chemistry, Suranaree University of Technology, Thailand; Nakhon Ratchasima.

  42. Alver BE, Sakızcı M. Ethylene adsorption on acid-treated clay minerals. Adsorpt Sci Technol. 2012;30:265–73.

    Article  CAS  Google Scholar 

  43. Erdoğan Alver B, Alver Ö, Günal A, Dikmen G. Effects of hydrochloric acid treatment on structure characteristics and C2H4 adsorption capacities of Ünye bentonite from Turkey: a combined FT-IR, XRD, XRF, TG/DTA and MAS NMR study. Adsorption. 2016;22:287–96.

    Article  Google Scholar 

  44. Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. 2nd ed. New York: Oxford University Press; 1997.

    Google Scholar 

  45. Oades JM. Interaction of polycations of aluminum and iron with clays. Clays Clay Miner. 1984;32:49–57.

    Article  CAS  Google Scholar 

  46. Thomas SM, Bertrand JA, Occelli ML, Huggins F, Gould SAC. Microporous montmorillonites expanded with alumina clusters and M [(μ-OH)Cu(μ-OCH2CH2NEt2)]6(ClO4)3, (M = Al, Ga, and Fe), or Cr [(μ-OCH3) (μ-OCH2CH2NEt2)CuCl]3 complexes. Inorg Chem. 1999;38:2098–105.

    Article  CAS  Google Scholar 

  47. Menesi J, Kekesi R, Körösi L, Zöllmer V, Richardt A, Dekany I. The effect of transition metal doping on the photooxidation process of titania-clay composites. Int J Photoenergy. 2008;2008:1–9.

    Article  Google Scholar 

  48. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der Waals adsorption of gases. J Am Chem Soc. 1940;62:1723–32.

    Article  CAS  Google Scholar 

  49. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1982.

    Google Scholar 

  50. Huang FC, Lee JF, Lee CK, Chao HP. Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surf A. 2004;239:41–7.

    Article  CAS  Google Scholar 

  51. Motshekga SC, Ray SS, Onyango MS, Momba MNB. Microwave-assisted synthesis, characterization and antibacterialactivity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–46.

    Article  CAS  Google Scholar 

  52. Kök MV. Thermogravimetry of selected bentonites. Energy Sources. 2002;24:907–14.

    Article  Google Scholar 

  53. Önal M, Sarıkaya Y. Thermal behavior of a bentonite. J Therm Anal Calorim. 2007;90:167–72.

    Article  Google Scholar 

  54. Bayram H, Önal M, Yılmaz H, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;10:873–9.

    Article  Google Scholar 

  55. Ursu AV, Jinescu G, Gros F, Nistor ID, Miron ND, Lisa G, Silion M, Djelveh G. Thermal and chemical stability of Romanian bentonite. J Therm Anal Calorim. 2011;106:965–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Anadolu University Commission of Scientific Research Project under Grant No. 0414F154. Special thanks to Prof. Dr. Fahri Esenli and Dr. Matthias Thommes for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Erdoğan Alver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan Alver, B., Günal, A. Thermal, structural and ethylene adsorption properties of Ag-, Cu- and Fe-modified bentonite from Turkey. J Therm Anal Calorim 126, 1533–1540 (2016). https://doi.org/10.1007/s10973-016-5640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5640-2

Keywords

Navigation