Skip to main content
Log in

Long-term thermal loading study on the dehydration behavior of Ca-bentonites of Ünye (Ordu, NE Turkey)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to monitor the changes in physicochemical and mineralogical properties of three Ca-bentonite samples from Ünye (Ordu, NE Turkey). The effect of long-term (20, 30 and 40 days) thermal loading (100, 150 and 200 °C) treatments on the dehydration behavior of Ca-bentonites (CaB) was characterized in terms of the variations in the cation exchange capacity (CEC), specific surface area (SSA), pH, swelling index (SI), crystal structure and molecular fingerprints. CEC of raw CaB samples (52.3–62.7 meq/100 g) shows maximum decrease at 40 days to 29.9–37.3 meq/100 g at 100 °C, 19.4–25.4 meq/100 g at 150 °C and 20.9–23.9 meq/100 g at 200 °C. Long-term thermal loading also lowers the SSA of CaB samples from 42.8–51.4 m2g−1 to 19.6–30.6 m2g−1 at 100 °C, 15.9–20.8 m2g−1 at 150 °C and 17.1–19.6 m2g−1 at 200 °C. The strong alkalinity of the CaB samples (pH 9.3–9.7) changes from slight to moderate (7.7–8.6) at 200 °C. The swelling index of CaB samples shows narrow-range variations from 4.4–7.5 mL/2 g (raw) to 4.2–5.3 mL/2 g at 100 °C, 4.2–5.8 mL/2 g at 150 °C and 3.7–5.8 mL/2 g at 200 °C at 40 days. Thermal loading has also the imprints on the molecular scale in the loss of capillary condensed and adsorbed water vibrations (~ 3388 cm−1). The dehydration effect at 100 and 150 °C thermal loadings is revealed by the broadening and asymmetry of the basal reflection with a decrease in the intensity; on the other hand, 200 °C treatment at 40 days results in the appearance of ~ 1 nm reflection which is suggested to be the beginning of illitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim S, Kwon KS, Sanchez M, Cho GC. Geological storage of high level nuclear waste. KSCE J Civ Eng. 2011;15(4):721–37.

    Article  Google Scholar 

  2. Chapman N, Hooper A. The disposal of radioactive waste underground. Proc Geol Assoc. 2012;123:46–63.

    Article  Google Scholar 

  3. Bucher F, Müller-Vonmoos M. Bentonite as a containment barrier for the disposal of highly radioactive wastes. Appl Clay Sci. 1989;4(2):157–77.

    Article  CAS  Google Scholar 

  4. Komine H, Ogata N. Prediction for swelling characteristics of compacted bentonite. Can Geotech J. 1996;33(1):11–22.

    Article  CAS  Google Scholar 

  5. Johnson B, Newman A, King J. Optimizing high-level nuclear waste disposal within a deep geologic repository. Ann Oper Res. 2017;253(2):733–55.

    Article  Google Scholar 

  6. Tripathy S, Thomas RH, Stratos P. Response of compacted bentonites to thermal and thermo-hydraulic loading at high temperatures. Geosciences. 2017;7(3):53.

    Article  Google Scholar 

  7. Delage P, Cui YJ, Tang AM. Clays in radioactive waste disposal. J Rock Mech Geotech Eng. 2010;2(2):111–23.

    Article  Google Scholar 

  8. Tripathy S, Sridharan A, Schanz T. Swelling pressures of compacted bentonites from diffuse double layer theory. Can Geotech J. 2004;41(3):437–50.

    Article  CAS  Google Scholar 

  9. Lee OJ, Lim GJ, Kang MI, Kwon S. Swelling pressures of compacted Ca-bentonite. Eng Geol. 2012;129–130:20–6.

    Article  Google Scholar 

  10. Kale RC, Ravi K. Influence of thermal loading on index and physicochemical properties of Barmer bentonite. Appl Clay Sci. 2018;165:22–39.

    Article  CAS  Google Scholar 

  11. Cho WJ, Lee JO, Chun KS. The temperature effects on hydraulic conductivity of compacted bentonite. Appl Clay Sci. 1999;14:47–58.

    Article  CAS  Google Scholar 

  12. Cho WJ, Lee JO, Kang CH. Influence of temperature elevation on the sealing performance of potential buffer material for a high-level radioactive waste repository. Ann Nucl Energy. 2000;27:1271–84.

    Article  CAS  Google Scholar 

  13. Gu BX, Wang LM, Minc LD, Ewing RC. Temperature effects on the radiation stability and ion exchange capacity of smectites. J Nucl Mater. 2001;297(3):345–54.

    Article  CAS  Google Scholar 

  14. Pusch R. Use of bentonite for isolation of radioactive waste products. Clay Miner. 1992;27(3):353–61.

    Article  CAS  Google Scholar 

  15. Gibb FGF. High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? Waste Manag. 1999;19(3):207–11.

    Article  Google Scholar 

  16. Kale RC, Ravi K. Influence of thermal history on swell pressures of compacted bentonite. Process Saf Environ. 2019;123:199–205.

    Article  CAS  Google Scholar 

  17. Wu TC, Bassett WA, Huang WL. Montmorillonite under high H2O pressures: stability of hydrate phases, rehydration, hysteresis, and the effect of interlayer cations. Am Mineral. 1997;82(1–2):69–78.

    Article  CAS  Google Scholar 

  18. Bala P, Samantaray KB, Srivastava SK. Dehydration transformation in Ca-montmorillonite. Bull Mater Sci. 2000;23:61–7.

    Article  CAS  Google Scholar 

  19. Wang MC, Benway JM, Arayssi AM. The effect of heating on engineering properties of clays. In: Hoddinott KB, Lamb RO, editors. Physico-chemical aspects of soil and related materials, ASTM STP 1095. West Conshohocken: ASTM; 1990. p. 139–58.

    Chapter  Google Scholar 

  20. Abdioğlu E, Arslan M. Mineralogy, geochemistry and genesis of bentonites of the Ordu area. NE Turkey Clay Miner. 2005;40(01):131–51.

    Article  Google Scholar 

  21. Karakaya MÇ, Karakaya N, Bakır S. Some properties and potential applications of the Na- and Ca-bentonites of Ordu (N.E. Turkey). Appl Clay Sci. 2011;54(2):159–65.

    Article  CAS  Google Scholar 

  22. Wilson MJ. X-ray powder diffraction methods. In: Wilson MJ, editor. A Handbook of determinative methods in clay mineralogy. Glasgow: Blackie and Sons Ltd; 1987.

    Google Scholar 

  23. Jones FO. New fast accurate test measures bentonite in drilling mud. Oil Gas J. 1964;42:76–8.

    Google Scholar 

  24. Çokça E, Birand A. Determination of cation exchange capacity of clayey soils by the methylene blue test. Geotech Test J. 1993;16:518–24.

    Article  Google Scholar 

  25. Santamarina JC, Klein KA, Wang YH, Prencke E. Specific surface: determination and relevance. Can Geotech J. 2002;39:233–41.

    Article  CAS  Google Scholar 

  26. ASTM D4972-19, Standard test methods for pH of soils. West Conshohocken, PA: ASTM International; 2019.

    Google Scholar 

  27. ASTM D5890-19, Standard test method for swell index of clay mineral component of geosynthetic clay liners. West Conshohocken, PA: ASTM International; 2019.

    Google Scholar 

  28. Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press; 1989.

    Google Scholar 

  29. Djomgoue P, Njopwouo D. FT-IR Spectroscopy applied for surface clays characterization. J Surface Eng Mater Adv Technol. 2013;3:275–82.

    Google Scholar 

  30. Holtzer M, Bobrowski A, Kumon SŻ. Temperature influence on structural changes of foundry bentonites. J Mol Struct. 2011;1004(1–3):102–8.

    Article  CAS  Google Scholar 

  31. Paluszkiewicz C, Holtzer M, Bobrowski A. FTIR analysis of bentonite in moulding sands. J Mol Struct. 2008;880:109–14.

    Article  CAS  Google Scholar 

  32. Inoue A, Watanabe T, Kohyama N, Brusewitz AN. Characterization of illitization of smectite in bentonite beds at Kinnekulle. Sweden Clay Clay Miner. 1990;38(3):241–9.

    Article  CAS  Google Scholar 

  33. Sarıkaya Y, Önal M, Baran B, Alemdaroğlu T. The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clay Clay Miner. 2000;48(5):557–62.

    Article  Google Scholar 

  34. Noyan H, Önal M, Sarıkaya Y. The effect of heating on the surface area, porosity and surface acidity of a bentonite. Clay Clay Miner. 2006;54(3):375–81.

    Article  CAS  Google Scholar 

  35. Önal M, Sarıkaya Y. Thermal behavior of a bentonite. J Therm Anal Calorim. 2007;90(1):167–72.

    Article  Google Scholar 

  36. Bulut G, Chimeddorj M, Esenli F, Çelik MS. Production of desiccants from Turkish bentonites. Appl Clay Sci. 2009;46:141–7.

    Article  CAS  Google Scholar 

  37. Bayram H, Önal M, Yılmaz H, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101(3):873–9.

    Article  CAS  Google Scholar 

  38. Tabak A, Yılmaz N, Eren E, Çağlar B, Afsin B, Sarıhan A. Structural analysis of naproxen-intercalated bentonite (Ünye). Chem Eng J. 2011;174(1):281–8.

    Article  CAS  Google Scholar 

  39. Yılmaz G. The effects of temperature on the characteristics of kaolinite and bentonite. Sci Res Essays. 2011;6(9):1928–39.

    Article  Google Scholar 

  40. Zuzana O, Annamária M, Silvia D, Jaroslav B. Effect of thermal treatment on the bentonite properties. Arhiv za tehničke nauke. 2012;7(1):49–56.

    Google Scholar 

  41. Wang MC, Jao M, Ghazal MS. Heating effect on swelling behaviour of expansive soils. Geomech Geoengin Int J. 2008;3:121–7.

    Article  Google Scholar 

  42. MacEwan DMC, Wilson MJ. Interlayer and intercalation complexes of clay minerals. In: Brindley GW, Brown G, editors. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society; 1980. p. 197–248.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors of this manuscript would like to thank Ünye Mining Industry Trade Limited Company, who supplied the CaB samples and created collaboration on this scientific subject. The first two authors wish to acknowledge the efficient use of research facilities at Research and Application Centre in Mugla Sitki Kocman University. The laboratory-scale support from Öykü ATAYTÜR and Sercan TÜRKÜN during the sample preparation stage is greatly appreciated. The editor and the reviewers of this contribution are highly acknowledged due to their invaluable comments which significantly improved the quality of the manuscript. This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Çamcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çamcı, O., Küçükuysal, C., Güngör, C. et al. Long-term thermal loading study on the dehydration behavior of Ca-bentonites of Ünye (Ordu, NE Turkey). J Therm Anal Calorim 147, 2073–2082 (2022). https://doi.org/10.1007/s10973-021-10647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10647-z

Keywords

Navigation