Skip to main content
Log in

The isothermal kinetics of zinc ferrite reduction with carbon monoxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reduction kinetics of zinc ferrite in CO was investigated under isothermal conditions at different CO concentration and roasting temperature with the help of the thermogravimetric analysis (TGA). The reduction of zinc ferrite was a step-wise mechanism. As the model fitting results suggest, the first stage was controlled by the rate of first-order (when CO = 4%) or the second-order (when CO = 6%, 8%) reaction, with the Ea in 4%, 6%, and 8% of CO being 91.45 kJ mol−1, 73.08 kJ mol−1, and 73.49 kJ mol−1, correspondingly. Also, the diffusion of reactant proves to constitute the rate-determining step in the second stage, and the reaction model is R2 (contracting cylinder), wherein the Ea in 4%, 6%, and 8% of CO is 80.81 kJ mol−1, 59.11 kJ mol−1, and 59.19 kJ mol−1, correspondingly. The generation of magnetite and zinc oxide is the chemical reaction control, and the generation of ferrous oxide, metal iron was the diffusion control. The increase in the CO concentration from 4% to 6% or 8% could decrease the Ea and increase the reaction order, consequently, the reductive roasting was accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peng B, Peng N, Liu H, Xue K, Lin D-h. Comprehensive recovery of Fe, Zn, Ag and In from high iron-bearing zinc calcine. J. Cent. South. Univ. 2017;24(5):1082–9.

    Article  CAS  Google Scholar 

  2. Gargul K, Boryczko B. Removal of zinc from dusts and sludges from basic oxygen furnaces in the process of ammoniacal leaching. Arch. Civ. Mech. Eng. 2015;15(1):179–87.

    Article  Google Scholar 

  3. Li K, An X, Park KH, Khraisheh M, Tang J. A critical review of CO2 photoconversion: catalysts and reactors. Catal Today. 2014;224:3–12.

    Article  CAS  Google Scholar 

  4. Nordhei C, Mathisen K, Safonova O, van Beek W, Nicholson DG. Decomposition of carbon dioxide at 500 °C over reduced iron, cobalt, nickel, and zinc ferrites: a combined xanes − xrd study. J Phys Chem C. 2009;113(45):19568–77.

    Article  CAS  Google Scholar 

  5. Tabata M, Nishida Y, Kodama T, Mimori K, Yoshida T, Tamaura Y. CO2 decomposition with oxygen-deficient Mn(II) ferrite. J Mater Sci. 1993;28(4):971–4.

    Article  CAS  Google Scholar 

  6. Liang Y, Min X, Chai L, Wang M, Liyang W, Pan Q, et al. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere. 2017;168:1142–51.

    Article  CAS  Google Scholar 

  7. Nasiri Y, Panjepour M, Ahmadian M. The kinetics of hematite reduction and cementite formation with CH4-H2-Ar gas mixture. Int J Miner Process. 2016;153:17–28.

    Article  CAS  Google Scholar 

  8. Kang HW, Chung WS, Murayama T. Effect of iron ore size on kinetics of gaseous reduction. ISIJ Int. 1998;38(2):109–15.

    Article  CAS  Google Scholar 

  9. Khedr MH. Isothermal reduction kinetics at 900–1100 °C of NiFe2O4 sintered at 1000–1200 °C. J. Anal. Appl. Pyrolysis. 2005;73(1):123–9.

    Article  CAS  Google Scholar 

  10. Davies M, Simnad M, Birchenall C. On the mechanism and kinetics of the scaling of iron. JOM. 1951;3(10):889–96.

    Article  CAS  Google Scholar 

  11. Li J, Li B, Han J, Cao Z, Wang J. A Comparative study on the reduction mechanism of Fe 2 O 3 under different heating methods. JOM. 2014;66(8):1529–36.

    Article  CAS  Google Scholar 

  12. Mac Rae DR. Kinetics and mechanism of the reduction of solid iron oxides in iron-carbon melts from 1200 to 1500 C. JOM. 1965;17(12):1391–5.

    Article  CAS  Google Scholar 

  13. Drakshayani DN, Mallya RM. Reactivity with hydrogen of pure iron oxide and of iron oxides doped with oxides of Mn, Co, Ni and Cu. J. Therm. Anal. 1991;37(5):891–906.

    Article  Google Scholar 

  14. Lee JJ, Lin CI, Chen HK. Carbothermal reduction of zinc ferrite. Metall Mater Trans B-Proc Metall Mater Proc Sci. 2001;32(6):1033–40.

    Article  Google Scholar 

  15. Tong LF, Hayes P. Mechanisms of the reduction of zinc Ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev. 2006;28(2):127–57.

    Article  Google Scholar 

  16. Tong LF. Reduction mechanisms and behaviour of zinc ferrite - Part 2: znFe2O4 solid solutions. Trans Inst Min Metall Sect C-Miner Process Extr Metall. 2001;110:C123–32.

    Article  CAS  Google Scholar 

  17. Tong LF. Reduction mechanisms and behaviour of zinc ferrite - Part 1: pure ZnFe2O4. Trans Inst Min Metall Sect C-Miner Process Extr Metall. 2001;110:C14–24.

    Article  CAS  Google Scholar 

  18. Wang Z, Liang Y, Peng N, Peng B. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2019;136(5):2157–64.

    Article  CAS  Google Scholar 

  19. Zhang L, Mo J, Li X, Pan L, Liang X, Wei G. A kinetic study of indium leaching from indium-bearing zinc ferrite under microwave heating. Metall Trans B. 2013;44(6):1329–36.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19(1):45–60.

    Article  CAS  Google Scholar 

  21. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J. Therm. Anal. Calorim. 2000;60(2):641–58.

    Article  CAS  Google Scholar 

  22. Junca E, Restivo TAG, de Oliveira JR, Espinosa DCR, Tenório JAS. Reduction of electric arc furnace dust pellets by simulated reformed natural gas. J Therm Anal Calorim. 2016;126(3):1889–97.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  24. Galwey AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions). Thermochim Acta. 2003;397(1):249–68.

    Article  CAS  Google Scholar 

  25. Junca E, Grillo FF, Restivo TAG, de Oliveira JR, Espinosa DCR, Tenório JAS. Kinetic investigation of synthetic zinc ferrite reduction by hydrogen. J Therm Anal Calorim. 2017;129(2):1215–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Key R&D Program of China (2018YFC1900300), National Science Fund for Distinguished Young Scholars (51825403), and National Natural Science Foundation of China (51574295) for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Min, X., Peng, N. et al. The isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim 146, 2253–2260 (2021). https://doi.org/10.1007/s10973-020-10542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10542-z

Keywords

Navigation