Skip to main content
Log in

Exergo-economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Exergo-economic analysis of a concentrated photovoltaic–thermoelectric generator (CPV-TEG) hybrid system is investigated. The specific exergy costing is employed to study the cost effectiveness of the CPV-TEG system. A multi-dimensional single-objective optimization is carried out to optimize the CPV-TEG hybrid system. The performance of the CPV-TEG system is found to be better than that of the concentrated photovoltaic (CPV) system alone in terms of overall energy and exergy efficiencies. From an exergo-economic standpoint, the CPV-TEG system is more cost effective as compared to the CPV system alone. The low value of the exergo-economic factor of the system indicated that the associated cost was mostly due to irreversibilities in the system. A compromise is made by optimizing the CPV-TEG system for maximum exergy efficiency using an optimum thermal resistance of the thermoelectric generator (TEG). For the operating conditions and the geometry considered, integration of CPV and TEG is not found to be feasible (in terms of exegetic performance) below certain values of heat transfer coefficients (< 2500 Wm−2 K−1). A minimum value of heat transfer coefficient of 5266 Wm−2 K−1 is determined for a water-cooled heat sink to limit the cell temperature to 100 °C under the studied set of operating conditions and the geometric configuration. Optimization results yielded exergy efficiencies of 42.22% and 43.48% for the stand-alone CPV system and CPV-TEG system, respectively. The minimum costs of electricity under the optimum conditions were obtained as \(0.57\;\$ \; {\text{kW}}\,{\text{h}}^{ - 1}\) and \(0.53\;\$ \; {\text{kW}}\,{\text{h}}^{ - 1}\) for the stand-alone CPV system and CPV-TEG system, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

Area, m2

b:

Width of thermoelement, m

B:

Width of TEG module, m

C:

Geometric concentration

\(\dot{C}\) :

Cost rate, \(\$ {\text{s}}^{ - 1}\)

\(\dot{c}\) :

Cost rate per unit exergy, \(\$ {\text{s}}^{ - 1} {\text{W}}^{ - 1}\)

\(\dot{E}\) :

Rate of exergy destroyed, W

f:

Fill factor

F:

Exergo-economic factor

G:

Solar radiation, \({\text{W m}}^{ - 2}\)

h:

Heat transfer coefficient, \({\text{W m}}^{ - 2} {\text{K}}^{ - 1}\)

I:

Electric current (A)

k:

Thermal conductivity, \({\rm W} \,{\rm m}^{ - 1}\,{\rm K}^{ - 1}\)

\(l\) :

Thickness, m

m:

Life span of system, years

\(\dot{Q}\) :

Heat transfer rate, W

q:

Heat transfer per unit area

\(\dot{W}\) :

Electrical power, W

R:

Thermal resistance, \({\text{K W}}^{ - 1}\)

r:

Interest rate, \(\%\)

T:

Temperature K

S:

Seebeck coefficient, \({\text{V K}}^{ - 1}\)

V:

Capital cost, \({\$}\)

\(\dot{X}\) :

Rate of exergy flow, W

\(zT\) :

Thermoelectric figure of merit

\(\dot{Z}\) :

Investment cost rate, \(\$ {\text{s}}^{ - 1}\)

opt:

Optical concentrator

rad:

Radiation

tot:

Total

hs:

Heat sink

ref:

Reference condition

a:

Ambient

sp:

Solder paste

cl:

Copper layer

cr:

Ceramic

ic:

Interconnect

TE:

Thermoelement

p-n:

P and n type

c:

Cold side

h:

Hot side

TEG:

Thermoelectric module

s:

Solar energy

\(\dot{Q}_{\text{hs}}\) :

Rate of heat rejected in heat sink

\(\dot{Q}_{\text{c}}\) :

Rate of heat transfer at cold side

\(\dot{Q}_{\text{h}}\) :

Rate of heat transfer at hot side

k:

Layers of the system

p:

Product

f:

Fuel

\(\eta\) :

Efficiency

\(\varepsilon\) :

Emissivity

\(\beta\) :

Temperature coefficient, \({\text{K}}^{ - 1}\)

\(\dot{\varGamma }\) :

Total irreversibility rate in the system, W

\(\varphi\) :

Exergy efficiency due solar radiation

\(\rho\) :

Electrical resistivity, \(\varOmega {\text{m}}\)

\(\gamma\) :

Electrical resistance, \(\varOmega\)

CRF:

Capital recovery factor

DNI:

Direct normal radiation

CPV:

Concentrated photovoltaic

TEG:

Thermoelectric generator

TIM:

Thermal interface material

SPECO:

Specific exergy costing

References

  1. Li G, Shittu S, Diallo TM, Yu M, Zhao X, Ji J. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation. Energy. 2018;158:41–58.

    Google Scholar 

  2. Rowe DM, Gao M. Evaluation of thermoelectric modules for power generation. J Power Sour. 1998;73:193–8.

    CAS  Google Scholar 

  3. Bjørk R, Nielsen KK. “The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems. Energy Convers Manage. 2018;156:264–8.

    Google Scholar 

  4. Bjørk R, Nielsen KK. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system. Sol Energy. 2015;120:187–94.

    Google Scholar 

  5. Rezania A, Sera D, Rosendahl LA. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe. Renew Energy. 2016;99:127–35.

    Google Scholar 

  6. Lekbir A, Hassani S, Ghani MR, Gan CK, Mekhilef S, Saidur R. Improved energy conversion performance of a novel design of concentrated photovoltaic system combined with thermoelectric generator with advance cooling system. Energy Convers Manage. 2018;177:19–29.

    CAS  Google Scholar 

  7. Sarafraz MM, Goodarzi M, Tlili I, et al. Thermodynamic potential of a high-concentration hybrid photovoltaic/thermal plant for co-production of steam and electricity. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09914-2.

    Article  Google Scholar 

  8. Hosseini SE, Butler B. Design and analysis of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09556-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vorobiev Y, González-Hernández J, Vorobiev P, Bulat L. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol Energy. 2006;80:170–6.

    Google Scholar 

  10. Zhang J, Xuan Y, Yang L. Performance estimation of photovoltaic-thermoelectric hybrid systems. Energy. 2014;78:895–903.

    CAS  Google Scholar 

  11. Liao T, Lin B, Yang Z. Performance characteristics of a low concentrated photovoltaic- thermoelectric hybrid power generation device. Int J Therm Sci. 2014;77:158–64.

    Google Scholar 

  12. Contento G, Lorenzi B, Rizzo A, Narducci D. Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy. 2017;131:230–8.

    CAS  Google Scholar 

  13. Lamba R, Kaushik SC. Solar driven concentrated photovoltaic-thermoelectric hybrid system: numerical analysis and optimization. Energy Convers Manage. 2018;170:34–49.

    Google Scholar 

  14. Otanicar TP, Theisen S, Norman T, Tyagi H, Taylor RA. Envisioning advanced solar electricity generation: parametric studies of CPV/T systems with spectral filtering and high temperature PV. Appl Energy. 2015;140:224–33.

    Google Scholar 

  15. Hashim H, Bomphrey JJ, Min G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renew Energy. 2016;87:458–63.

    Google Scholar 

  16. Wu YY, Wu SY, Xiao L. Performance analysis of photovoltaic-thermoelectric hybrid system with and without glass cover. Energy Convers Manage. 2015;93:151–9.

    Google Scholar 

  17. Cui T, Xuan Y, Li Q. Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials. Energy Convers Manage. 2016;112:49–60.

    CAS  Google Scholar 

  18. Yin E, Li Q, Xuan Y. Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration. Appl Energy. 2019;236:560–73.

    Google Scholar 

  19. Yin E, Li Q, Xuan Y. Optimal design method for concentrating photovoltaic-thermoelectric hybrid system. Appl Energy. 2018;226:320–9.

    Google Scholar 

  20. Yin E, Li Q, Xuan Y. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system. Energy Convers Manage. 2017;143:188–202.

    Google Scholar 

  21. Rodrigo PM, Valera A, Fernández EF, Almonacid FM. Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules. Appl Energy. 2019;238:1150–62.

    Google Scholar 

  22. Gu W, Ma T, Song A, Li M, Shen L. Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Convers Manage. 2019;198:111800.

    Google Scholar 

  23. Beeri O, Rotem O, Hazan E, Katz EA, Braun A. Experimental realization and modeling Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: experimental realization and modeling. J Appl Phys. 2015;118(11):115104.

    Google Scholar 

  24. Pourkiaei SM, Ahmadi MH, Sadeghzadeh M, Moosavi S, Pourfayaz F, Chen L, Yazdi MAP, Kumar R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy. 2019;186:115849.

    Google Scholar 

  25. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Kumar R, Naeimi A, Ming T. Solar power technology for electricity generation: a critical review. Energy Sci Eng. 2018;6:340–61.

    Google Scholar 

  26. Soltani S, Kasaeian A, Sarrafha H, Wen D. An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol Energy. 2017;155:1033–43.

    CAS  Google Scholar 

  27. Mahmoudinezhad S, Rezania A, Cotfas DT, Cotfas PA, Rosendahl LA. Experimental and numerical investigation of hybrid concentrated photovoltaic –thermoelectric module under low solar concentration. Energy. 2018;159:1123–31.

    Google Scholar 

  28. Farhangian MO, Ameri M, Adelshahian B. The experimental investigation of a hybrid photovoltaic-thermoelectric power generator solar cavity-receiver. Sol Energy. 2018;161:38–46.

    Google Scholar 

  29. Dallan BS, Schumann J, Lesage FJ. Performance evaluation of a photoelectric-thermoelectric cogeneration hybrid system. Sol Energy. 2015;118:276–85.

    Google Scholar 

  30. Sahitya S, Akshaj A, Vivek K, Abhishek V, Hrishikesh D, Amit K, Jain VK. Study of hybrid photovoltaic–thermoelectric system for efficiency enhancement of solar cells. Berlin: Springer; 2020. p. 119–25.

    Google Scholar 

  31. Tsatsaronis G. Thermoeconomic analysis and optimization of energy systems. Prog Energy Combust Sci. 1993;19:227–57.

    CAS  Google Scholar 

  32. Ghorbani B, Ebrahimi A, Skandarzadeh F, et al. Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10158-3.

    Article  Google Scholar 

  33. Sharaf OZ, Orhan MF. Comparative thermodynamic analysis of densely-packed concentrated photovoltaic thermal (CPVT) solar collectors in thermally in-series and in-parallel receiver configuration. Renew Energy. 2018;126:296–321.

    Google Scholar 

  34. Li D, Xuan Y, Li Q, Hong H. Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems. Energy. 2017;126:343–51.

    CAS  Google Scholar 

  35. Singh S, Ibeagwu OI, Lamba R. Thermodynamic evaluation of irreversibility and optimum performance of a concentrated PV-TEG cogenerated hybrid system. Sol Energy. 2018;170:896–905.

    CAS  Google Scholar 

  36. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manage. 2018;165:113–26.

    Google Scholar 

  37. Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019;7:1649–58.

    Google Scholar 

  38. Mehrpooya M, Ghorbani B, Sadeghzadeh M. Hybrid solar parabolic dish power plant and high-temperature phase change material energy storage system. Int J Energy Res. 2019;43:5405–20.

    CAS  Google Scholar 

  39. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Process development of a solar-assisted multi-production plant: power, cooling, and hydrogen. Int J Hydrogen Energy. 2020;45:30056–79.

    CAS  Google Scholar 

  40. Ismaila, KG. Exergo-economic optimization of concentrated photovoltaic thermoelectric hybrid generator. Masters thesis, King Fahd University of Petroleum and Minerals. 2020.

  41. Royne A, Dey CJ, Mills DR. Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells. 2005;86:451–83.

    CAS  Google Scholar 

  42. Cotal H, Frost J. Heat transfer modeling of concentrator multijunction solar cell assemblies using finite difference techniques. In 35th IEEE Photovoltaic Specialists Conference. 2010;000213–000218.

  43. Rezania A, Rosendahl LA. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Appl Energy. 2017;187:380–9.

    Google Scholar 

  44. Notton G, Cristofari C, Mattei M, Poggi P. Modelling of a double-glass photovoltaic module using finite differences. Appl Therm Eng. 2005;25(17):2854–77.

    CAS  Google Scholar 

  45. Chiu P, Wojtczuk S, Harris C, Pulver D. Temperature dependence of InGaP/GaAs/InGaAs concentrators using bifacial epigrowth. IEEE Photovolt Spec Conf. 2011;111:002523–6.

    Google Scholar 

  46. Gomez M, Reid R, Ohara B, Lee H. Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. J Appl Phys. 2013;113(17):174908.

    Google Scholar 

  47. Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. New York: John Wiley; 2013.

    Google Scholar 

  48. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. New York: John Wiley; 2007.

    Google Scholar 

  49. Moazzez AF, Najafi G, Ghobadian B, et al. Numerical simulation and experimental investigation of air cooling system using thermoelectric cooling system. J Therm Anal Calorim. 2020;139:2553–63. https://doi.org/10.1007/s10973-019-08899-x.

    Article  CAS  Google Scholar 

  50. Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A. A review on the performance of photovoltaic/thermoelectric hybrid generators. Int J Energy Res. 2020;44:3365–94.

    Google Scholar 

  51. Xuan XC, Ng KC, Yap C, Chua HT. Optimization of two-stage thermoelectric coolers with two design configurations. Energy Convers Manage. 2002;43(15):2041–52.

    Google Scholar 

  52. Goldsmid HJ. Introduction to thermoelectricity. 2nd ed. Berlin: Springer-Verlag; 2016.

    Google Scholar 

  53. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74(6):469–88.

    Google Scholar 

  54. Bejan A, Michael M, George T. Thermal design and optimization. New York: Wiley; 1995.

    Google Scholar 

  55. Evola G, Marletta L. Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector. Sol Energy. 2014;107:12–25.

    Google Scholar 

  56. Si D, Yeji L, Yungpil Y, Jinoh K, Suyong K, Seung JS, Ho-Young K. A support strategy for the promotion of photovoltaic uses for residential houses in Korea. Energy Policy. 2013;53:248–56.

    Google Scholar 

  57. Pérez-Higueras P, Fernández EF. High concentrator photovoltaics: fundamentals, engineering and power plants. Berlin: Springer; 2015.

    Google Scholar 

  58. Yazawa K, Shakouri A. Material optimization for concentrated solar photovoltaic and thermal co-generation. Pacific Rim Tech Conf Exhib Packag Int Electron Photon Syst Int Pack. 2011;1:733–9.

    Google Scholar 

  59. Antonik M, O’Connor BT, Ferguson S. Performance and design comparison of a bulk thermoelectric cooler with a hybrid architecture. J Therm Sci Eng Appl. 2016;8:021022.

    Google Scholar 

  60. Pérez HP, Ferrer JP, Almonacid F, Fernández EF. Efficiency and acceptance angle of high concentrator photovoltaic modules: current status and indoor measurements. Renew Sustain Energy Rev. 2018;94:143–53.

    Google Scholar 

  61. Micheli L, Fernández EF, Almonacid F, Mallick TK, Smestad GP. Performance, limits and economic perspectives for passive cooling of high concentrator photovoltaics. Sol Energy Mater Sol Cells. 2016;153:164–78.

    CAS  Google Scholar 

  62. Web source: http://www.azurspace.com. Accessed 22 Dec 2019.

  63. Fernández EF, Almonacid F, Rodrigo P, Pérez-Higueras P. Model for the prediction of the maximum power of a high concentrator photovoltaic module. Sol Energy. 2013;97:12–8.

    Google Scholar 

  64. Fernández EF, Pérez-Higueras P, Garcia LA, Vidal PG. Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: First results and steps. Prog Photovolt Res Appl. 2013;21:693–701.

    Google Scholar 

  65. Kaviany M, Kanury A. Principles of heat transfer. New York: Wiley; 2002.

    Google Scholar 

  66. Rodrigo P, Fernández EF, Almonacid F, Pérez-Higueras PJ. Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev. 2014;38:478–88.

    Google Scholar 

  67. González PE, Algora C, Nunez N, Orlando V, Vazquez M, Bautista J, Araki K. Temperature accelerated life test on commercial concentrator III-V triple-junction solar cells and reliability analysis as a function of the operating temperature. Prog Photovoltaics Res Appl. 2015;23:559–69.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia for this work under Research Grant RG171001 and by the King Abdullah City for Atomic and Renewable Energy (K.A.CARE) through Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Z. Sahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaila, K.G., Sahin, A.Z. & Yilbas, B.S. Exergo-economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator. J Therm Anal Calorim 145, 1035–1052 (2021). https://doi.org/10.1007/s10973-020-10508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10508-1

Keywords

Navigation