Skip to main content
Log in

Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The natural gas entering the liquefaction cycle usually consists of nitrogen, ethane, propane and also heavier hydrocarbons which are economically explainable to be separated from methane, considering that their heating values are higher than methane. In this paper, a hybrid system is developed and analyzed for liquefied natural gas, natural gas liquids and power tri-generation using LNG/NGLs recovery system, absorption–compression combined refrigeration, organic Rankine cycle and solar parabolic trough collectors. This integrated structure produces 54.12 kg s−1 NGLs, 66.52 kg s−1 LNG and 278.5 MW net power output. Specific power consumption, thermal and exergy efficiencies of the hybrid system are 0.3771 kWh kg−1 LNG, 78.38% and 84.47%, respectively. The pinch method is used to extract the heat exchanger network related to the multi-stream heat exchanger of the hybrid system. To simulate the integrated structure, MATLAB programming, HYSYS and TRNSYS software with the weather conditions of Bandar Abbas city in Iran are used. The effect of natural gas composition entering the cycle on system parameters is studied and reported. Results show that with the reduction in methane percentage in natural gas to 55 mol%, specific power consumption increases to 0.6004 kWh kg−1 LNG, and thermal efficiency decreases to 71.61%. The integrated structural behavior at different operating conditions is used to investigate the sensitivity analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ACR:

Absorption–compression refrigeration

CO2 :

Carbon dioxide

COP:

Coefficient of performance

C3MR:

Propane pre-cooled mixed refrigerant

DMR:

Dual mixed refrigerant

ES:

Evaporator–subcooler

EC:

Evaporator–condenser

HRSG:

Heat recovery steam generator

LMTD:

Logarithmic mean temperature difference

LNG:

Liquefied natural gas

MFC:

Mixed fluid cascade

MR:

Mixed refrigerant

MCHE:

Main cryogenic heat exchangers

NGLs:

Natural gas liquids

ORC:

Organic Rankine cycle

PTC:

Parabolic trough collector

TPED:

Total primary energy demand

TCI:

Total cost investment

TAC:

Total annualized cost

SDG:

Sustainable development goal

GA:

Genetic algorithm

A :

Area of the heat exchanger (m2)

ACi:

Air cooler

A :

Specific heat transfer area (m2 s kg−1)

Ci:

Compressor

D :

Receiver diameter (m)

Di:

Flash drum

E :

Specific flow exergy (kJ kg−1 mol−1)

Ex:

Exergy (kW)

H :

Specific enthalpy (kJ kg−1 mol−1)

HXi:

Heat exchanger

LW:

Lost work

\(\dot{m}\) :

Mass flow rate (kg s−1)

N :

Molar flow rate (kg mol s−1)

P :

Pressure (kPa)

\(\dot{Q}\) :

Rate of heat transfer (kW)

S :

Specific entropy (kJ kg−1 mol−1 °C−1)

T :

Temperature (K)

TUi:

Turbine

U :

Overall heat transfer coefficient

W :

Work (kW)

TVi:

Valve

\(r_{\text{r}}\) :

Rim radius (m)

R :

Mirror radius (m)

F :

Focal length (\({\text{m}}\))

T r :

Absorber temperature (°C)

T c :

Glass cover temperature (°C)

T in :

The temperature of receiver inlet fluid (°C)

\(Q_{\text{u}}\) :

Useful energy (W)

T sky :

Sky temperature (supposed to be 6 °C less than ambient temperature)

Nu:

Nusselt number of turbulent temperature (−)

Re:

Reynolds number (−)

Pr:

Prandtl number (−)

m c :

Mass flow rate collector (kg s−1)

m a :

Specific mass flow rate in tube (kg m−2 s−1)

A a :

Aperture area (m2)

k fi :

Thermal conductivity of the inlet fluid (W m−1 K−1)

h fi :

Heat transfer coefficient of the inlet fluid (W m−2 K−1)

h r, c-am :

Radiation heat transfer coefficient between cover and ambient (W m−2 K−1)

h c, c-am :

Convection heat transfer coefficient between cover and ambient (W m−2 K−1)

A c :

The glass cover area (m2)

h r, r-c :

Radiation heat transfer coefficient from absorber to cover (W m−2 K−1)

T amb :

Ambient temperature (°C)

A r :

The absorber area (m2)

U L :

Thermal loss coefficient from the receiver (W m−2 K−1)

\(F^{\prime}\) :

The collector efficiency (–)

D ro :

Receiver outer diameter (m) or glass cover diameter (m)

D ri :

Receiver inner diameter (m) or absorber diameter (m)

k m :

Thermal conductivity (W m−1 K−1)

X end :

End loss

C :

Geometric concentration ratio

h :

The collector thermal efficiency

W a :

Parabola aperture (m)

X :

Distance along longitudinal direction of the receiver that is not illuminated

L :

Length of the PTC (m)

F R :

Collector heat removal factor, which shows the total useful gained energy of the collector (−)

m c :

Collector mass flow rate (kg s−1)

C p :

Specific heat at constant pressure (kJ kg−1 K−1)

V air :

Air velocity

G h :

Beam radiation (W m−2)

η :

Efficiency

Σ:

Sum

∫:

Integration

\(\varepsilon_{\text{c}}\) :

Emittance coefficient of the glass cover (−)

\(\varepsilon_{\text{r}}\) :

Emittance coefficient of the absorber (−)

\(\sigma\) :

Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4)

\(\theta_{\text{m}}\) :

Half of acceptance angle (°)

\(\Delta\) :

Difference

\(\theta\) :

Mirror angle (°)

\(\theta_{\text{r}}\) :

Rim angle (°)

\(\eta_{\text{opt}}\) :

Optical efficiency; the energy gained by the absorber tube to the energy reached the collector (−)

\(\rho\) :

Trough reflectance (−)

\(\tau_{\text{env}}\) :

Cover transmittance (−)

\(\alpha_{\text{r}}\) :

Receiver absorbance (−)

\(\gamma\) :

Intercept factor (−)

\(K\left( \theta \right)\) :

Incident angle correction factor

am:

Ambient

a:

Aperture

C:

Cold

c:

Condenser, cover, collector

Ch:

Chemical

D:

Destruction

e:

Evaporator

Ex:

Expander

ev:

Entrained vapor

ex:

Exergy

fi:

Inlet fluid

F:

Feed

H:

Hot

i:

Inlet, number of stream

j:

Composition

Id:

Ideal

K:

Number of component

L:

Loss

min:

Minimum

o:

Outlet

r:

Radiation

rw:

Reversible

p:

Pressure, product

Ph:

Physical

T:

Thermal component

tot:

Total

0:

Reference state

References

  1. Kim H, Shin E-s, Chung W-j. Energy demand and supply, energy policies, and energy security in the Republic of Korea. Energy Policy. 2011;39(11):6882–97.

    CAS  Google Scholar 

  2. https://www.iea.orgweo. World Energy Outook2017.

  3. Bhutto AW, Bazmi AA, Zahedi G, Klemeš JJ. A review of progress in renewable energy implementation in the Gulf Cooperation Council countries. J Clean Prod. 2014;71:168–80.

    Google Scholar 

  4. Kidnay AJ, Parrish WR, McCartney DG. Fundamentals of natural gas processing. Boca Raton: CRC Press; 2011.

    Google Scholar 

  5. Barclary M, Denton N. Selecting offshore LNG processes. LNG J. 2005;10:34–6.

    Google Scholar 

  6. Elliot D, editor. Benefit of integrating NGL extraction and LNG liquefaction technology. AIChE Spring National Meeting. In: 5th Topical conference on natural gas utilization (TI) session 16c-Gas, Atlanta, USA, 2005; 2005.

  7. He T, Karimi IA, Ju Y. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chem Eng Res Des. 2018;132:89–114.

    CAS  Google Scholar 

  8. Kuo J, Wang K, Chen C. Pros and cons of different Nitrogen Removal Unit (NRU) technology. J Nat Gas Sci Eng. 2012;7:52–9.

    CAS  Google Scholar 

  9. Morosuk T, Tesch S, Hiemann A, Tsatsaronis G, Omar NB. Evaluation of the PRICO liquefaction process using exergy-based methods. J Nat Gas Sci Eng. 2015;27:23–31.

    CAS  Google Scholar 

  10. Morosuk T, Tsatsaronis G. Comparative evaluation of LNG–based cogeneration systems using advanced exergetic analysis. Energy. 2011;36(6):3771–8.

    Google Scholar 

  11. Park JH, Khan MS, Andika R, Getu M, Bahadori A, Lee M. Techno-economic evaluation of a novel NGL recovery scheme with nine patented schemes for offshore applications. J Nat Gas Sci Eng. 2015;27:2–17.

    Google Scholar 

  12. Mehrpooya M, Hossieni M, Vatani A. Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL. Ind Eng Chem Res. 2014;53(45):17705–21.

    CAS  Google Scholar 

  13. Popli S, Rodgers P, Eveloy V. Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl Therm Eng. 2013;50(1):918–31.

    CAS  Google Scholar 

  14. Vatani A, Mehrpooya M, Tirandazi B. A novel process configuration for co-production of NGL and LNG with low energy requirement. Chem Eng Process. 2013;63:16–24.

    CAS  Google Scholar 

  15. Wang M, Khalilpour R, Abbas A. Thermodynamic and economic optimization of LNG mixed refrigerant processes. Energy Convers Manag. 2014;88:947–61.

    CAS  Google Scholar 

  16. Xu X, Liu J, Jiang C, Cao L. The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process. Appl Energy. 2013;102:1127–36.

    CAS  Google Scholar 

  17. Hasan MF, Razib MS, Karimi I. Optimization of compressor networks in LNG operations. Computer aided chemical engineering. Amsterdam: Elsevier; 2009. p. 1767–72.

    Google Scholar 

  18. Kalinowski P, Hwang Y, Radermacher R, Al Hashimi S, Rodgers P. Application of waste heat powered absorption refrigeration system to the LNG recovery process. Int J Refrig. 2009;32(4):687–94.

    CAS  Google Scholar 

  19. Matjanov E. Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP. Energy. 2020;192:116625.

    Google Scholar 

  20. Li C, Liu J, Zheng S, Chen X, Li J, Zeng Z. Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy. Appl Therm Eng. 2019;159:113937.

    Google Scholar 

  21. Ding H, Sun H, Sun S, Chen C. Analysis and optimisation of a mixed fluid cascade (MFC) process. Cryogenics. 2017;83:35–49.

    CAS  Google Scholar 

  22. Piadehrouhi F, Ghorbani B, Miansari M, Mehrpooya M. Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors. Energy. 2019;179:938–59.

    CAS  Google Scholar 

  23. Ghorbani B, Mahyari KB, Mehrpooya M, Hamedi M-H. Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery. Renew Energy. 2020;148:1227–43.

    Google Scholar 

  24. Mehrpooya M, Ghorbani B, Hosseini SS. Thermodynamic and economic evaluation of a novel concentrated solar power system integrated with absorption refrigeration and desalination cycles. Energy Convers Manag. 2018;175:337–56.

    Google Scholar 

  25. Ashouri M, Vandani AMK, Mehrpooya M, Ahmadi MH, Abdollahpour A. Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers Manag. 2015;105:1328–39.

    CAS  Google Scholar 

  26. Rao W-J, Zhao L-J, Liu C, Zhang M-G. A combined cycle utilizing LNG and low-temperature solar energy. Appl Therm Eng. 2013;60(1–2):51–60.

    CAS  Google Scholar 

  27. Javidmehr M, Joda F, Mohammadi A. Thermodynamic and economic analyses and optimization of a multi-generation system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system. Energy Convers Manag. 2018;168:467–81.

    Google Scholar 

  28. Chen Y, Han W, Jin H. Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures. Appl Energy. 2017;185:2106–16.

    CAS  Google Scholar 

  29. Ghorbani B, Hamedi M-H, Amidpour M, Shirmohammadi R. Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit. Int J Refrig. 2017;77:20–38.

    CAS  Google Scholar 

  30. Nouri M, Miansari M, Ghorbani B. Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems. J Clean Prod. 2020;259:120862.

    CAS  Google Scholar 

  31. Mehrpooya M, Ghorbani B, Mousavi SA, Zaitsev A. Proposal and assessment of a new integrated liquefied natural gas generation process with auto–Cascade refrigeration (exergy and economic analyses). Sustain Energy Technol Assess. 2020;40:100728.

    Google Scholar 

  32. Ghorbani B, Shirmohammadi R, Mehrpooya M. A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles–Economic and exergy analyses. Appl Therm Eng. 2018;132:283–95.

    CAS  Google Scholar 

  33. Xu Y, Jiang N, Pan F, Wang Q, Gao Z, Chen G. Comparative study on two low-grade heat driven absorption–compression refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses. Energy Convers Manag. 2017;133:535–47.

    CAS  Google Scholar 

  34. Baccioli A, Antonelli M, Desideri U. Dynamic modeling of a solar ORC with compound parabolic collectors: annual production and comparison with steady-state simulation. Energy Convers Manag. 2017;148:708–23.

    Google Scholar 

  35. Bellos E, Tzivanidis C. Multi-objective optimization of a solar driven trigeneration system. Energy. 2018;149:47–62.

    CAS  Google Scholar 

  36. Mehrpooya M, Taromi M, Ghorbani B. Thermo-economic assessment and retrofitting of an existing electrical power plant with solar energy under different operational modes and part load conditions. Energy Rep. 2019;5:1137–50.

    Google Scholar 

  37. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic Press; 2013.

    Google Scholar 

  38. Ghorbani B, Mehrpooya M, Omid E. Hybrid solar liquefied natural gas, post combustion carbon dioxide capture and liquefaction. Energy Convers Manag. 2020;207:112512.

    CAS  Google Scholar 

  39. Mehrpooya M, Ghorbani B, Manizadeh A. Cryogenic biogas upgrading process using solar energy (process integration, development, and energy analysis). Energy. 2020;203:117834.

    CAS  Google Scholar 

  40. Ghorbani B, Mehrpooya M, Shokri S. Developing an integrated structure for simultaneous generation of power and liquid CO2 using parabolic solar collectors, solid oxide fuel cell, and post-combustion CO2 separation unit. Appl Therm Eng. 2020;179:115687.

    CAS  Google Scholar 

  41. Mehrpooya M, Sharifzadeh MMM, Mousavi SA. Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses. Energy. 2019;169:61–78.

    CAS  Google Scholar 

  42. Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl Therm Eng. 2017;111:397–406.

    CAS  Google Scholar 

  43. Sadaghiani MS, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. Int J Hydrog Energy. 2017;42(9):6033–50.

    CAS  Google Scholar 

  44. Mehrpooya M, Ghorbani B, Hosseini SS. Developing and exergetic performance assessment of biogas upgrading process driven by flat plate solar collectors coupled with Kalina power cycle. Energy Convers Manag. 2019;181:398–413.

    CAS  Google Scholar 

  45. Ghorbani B, Mehrpooya M, Ghasemzadeh H. Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process. Energy. 2018;158.

  46. Ghorbani B, Shirmohammadi R, Mehrpooya M, Hamedi M-H. Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm. Energy. 2018;159:410–28.

    Google Scholar 

  47. Ghorbani B, Mehrpooya M, Mousavi SA. Hybrid molten carbonate fuel cell power plant and multiple-effect desalination system. J Clean Prod. 2019;220:1039–51.

    CAS  Google Scholar 

  48. Mehrpooya M, Sharifzadeh MMM, Rosen MA. Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy. Energy. 2016;95:324–45.

    CAS  Google Scholar 

  49. Kotas TJ. The exergy method of thermal plant analysis. Amsterdam: Elsevier; 2013.

    Google Scholar 

  50. Ghorbani B, Miansari M, Zendehboudi S, Hamedi M-H. Exergetic and economic evaluation of carbon dioxide liquefaction process in a hybridized system of water desalination, power generation, and liquefied natural gas regasification. Energy Convers Manag. 2020;205:112374.

    CAS  Google Scholar 

  51. Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Rep. 2018;4:243–51.

    Google Scholar 

  52. Vatani A, Mehrpooya M, Palizdar A. Energy and exergy analyses of five conventional liquefied natural gas processes. Int J Energy Res. 2014;38(14):1843–63.

    Google Scholar 

  53. Forg W. Liquefaction of natural gas. Google Patents; 1978.

  54. Mehrpooya M, Jarrahian A, Pishvaie MR. Simulation and exergy-method analysis of an industrial refrigeration cycle used in NGL recovery units. Int J Energy Res. 2006;30(15):1336–51.

    CAS  Google Scholar 

  55. Mehrpooya M, Vatani A. System and method for recovering natural gas liquids with auto refrigeration system. Google Patents; 2013.

  56. Ebrahimi A, Ziabasharhagh M. Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy. 2017;126:868–85.

    CAS  Google Scholar 

  57. Ebrahimi A, Ghorbani B, Lohrasbi H, Ziabasharhagh M. Novel integrated structure using solar parabolic dish collectors for liquid nitrogen production on offshore gas platforms (exergy and economic analysis). Sustain Energy Technol Assess. 2020;37:100606.

    Google Scholar 

  58. Ebrahimi A, Ghorbani B, Ziabasharhagh M. Pinch and sensitivity analyses of hydrogen liquefaction process in a hybridized system of biomass gasification plant, and cryogenic air separation cycle. J Clean Prod. 2020;258:120548.

    CAS  Google Scholar 

  59. Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks. Chem Eng Sci. 1983;38(5):745–63.

    CAS  Google Scholar 

  60. Alfellag MAA. Modeling and experimental investigation of parabolic trough solar collector. Embry-Riddle Aeronautical University; Master of Science in Mechanical Engineering. 2014.

  61. Ghorbani B, Hamedi M-H, Amidpour M, Mehrpooya M. Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)). Energy. 2016;115:88–106.

    CAS  Google Scholar 

  62. Khan MS, Chaniago YD, Getu M, Lee M. Energy saving opportunities in integrated NGL/LNG schemes exploiting: thermal-coupling common-utilities and process knowledge. Chem Eng Process. 2014;82:54–64.

    CAS  Google Scholar 

  63. Ghorbani B, Hamedi M-H, Amidpour M. Development and optimization of an integrated process configuration for natural gas liquefaction (LNG) and natural gas liquids (NGL) recovery with a nitrogen rejection unit (NRU). J Nat Gas Sci Eng. 2016;34:590–603.

    CAS  Google Scholar 

  64. Brostow AA, Roberts MJ. Integrated NGL recovery in the production of liquefied natural gas. Google Patents; 2006.

  65. Roberts MJ, Brostow AA. Integrated NGL Recovery And Liquefied Natural Gas Production. Google Patents; 2010.

  66. Ransbarger WL. Intermediate pressure LNG refluxed NGL recovery process. Google Patents; 2006.

  67. Qualls W, Ransbarger W, Huang S, Yao J, Elliot D, Chen J et al. Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility. Google Patents; 2006.

  68. Cuellar KT, Wilkinson JD, Hudson PHM, Pierce PMC. Co-Producing LNG from Cryogenic NGL Recovery Plants. 81th Annual Convention of the Gas Processors Association. 2002.

  69. Martinez TL, Wilkinson JD, Hudson HM, Cuellar KT. Liquefied natural gas and hydrocarbon gas processing. Google Patents; 2014.

  70. Mak J, Graham C. Configurations and methods of integrated NGL recovery and LNG liquefaction. Google Patents; 2006.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BG involved in supervision, conceptualization, methodology, investigation, software, validation, original draft. AE took part in conceptualization, methodology, investigation, writing original draft, software, validation. FS participated in methodology, investigation, writing original draft, software, validation. MZ took part in conceptualization, methodology, investigation, methodology.

Corresponding author

Correspondence to Bahram Ghorbani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, B., Ebrahimi, A., Skandarzadeh, F. et al. Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors. J Therm Anal Calorim 145, 925–953 (2021). https://doi.org/10.1007/s10973-020-10158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10158-3

Keywords

Navigation