Skip to main content
Log in

Thermal analysis via horizontal solidification of Al3Cu2Si (mass%) alloy: thermal and microstructural parameters, intermetallic compounds and microhardness

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A transient horizontal solidification experiment was performed to investigate the role of the thermal parameters, such as growth and cooling rates (GR and CR, respectively), on the microstructure and microhardness (HV) of the Al2Si3Cu (mass%) alloy. Thermal data were generated using a water-cooled solidification device. This allowed to determine a large range of GR and CR. As-cast samples from the cooled surface were characterized by optical microscopy and scanning electron microscopy (MO and SEM). The resulting microstructure was characterized by an Al-rich dendritic primary phase (Alα) and by an interdendritic eutectic mixture composed of Alαeutectic + Si particle + (Al2Cu and Fe) intermetallic compounds. The Alα phase was characterized by primary, secondary and tertiary dendrite arm spacings (λ1, λ2 and λ3, respectively). The λ1, λ2 e λ3 dependence on GR and CR was characterized by power-type mathematical equations. It was evidenced the tertiary branches occurrence for GR > 0.95 mm s−1 and CR > 6.5 °C s−1. Microhardness (HV) was measured at the center of the dendritic primary phase and within the interdendritic regions. Higher HV values were observed in the eutectic mixture. Experimental power and Hall–Petch mathematical equations were proposed to characterize HV variation within the interdendritic region as a function of λ1, λ2 and λ3. A parametric factor given by the expression \(\varepsilon = \frac{\text{CR}}{{\left( {\mathop \sum \nolimits_{1}^{\text{n}} C_{\text{on}} } \right)/n}}\) that allows to predict the appearance of tertiary dendritic arms for the assumed solidification conditions was proposed by the present work, for future predictions. A comparison with the literature was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barros AS, Magno IA, Souza FA, Mota CA, Moreira AL, Silva MA, Rocha OL. Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al–Cu alloys: effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase. Met Mater Int. 2015;21:429–39.

    Article  CAS  Google Scholar 

  2. Gündüz M, Çadirli E. Directional solidification of aluminium–copper alloys. Mater Sci Eng A. 2002;327:167–85.

    Article  Google Scholar 

  3. Çadırlı E. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al–Cu alloys. Met Mater Int. 2013;19:411–22.

    Article  CAS  Google Scholar 

  4. Kaya H, Çadırlı E, Böyük U, Maraşli N. Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys. Appl Surf Sci. 2008;255:3071–8.

    Article  CAS  Google Scholar 

  5. Rosa DM, Spinelli JE, Garcia A. Tertiary dendrite arm spacing during downward transient solidification of Al–Cu and Al–Si alloys. Mater Lett. 2006;60:1871–4.

    Article  CAS  Google Scholar 

  6. Barros AS, Silva MAPS, Rocha OFL, Moreira ALS. Thermal parameters, tertiary dendritic growth and microhardness of directionally solidified Al–3 wt%Cu alloy. Mater Sci Forum. 2016;869:452–7.

    Article  Google Scholar 

  7. Barros AS, Silva AP, Ferreira IL, Rocha OL, Moreira AL. Effect of interfacial heat transfer coefficient on dendritic growth and microhardness during horizontal directional solidification of an aluminum-copper alloy. Defect Diffus Forum. 2016;367:10–7.

    Article  Google Scholar 

  8. Magno IA, Souza FA, Costa MO, Nascimento JM, Silva AP, Costa TS, Rocha OL. Interconnection between the solidification and precipitation hardening processes of an AlSiCu alloy. J Mater Sci Technol. 2019;35:791–806.

    Article  CAS  Google Scholar 

  9. Costa TA, Dias Filho M, Gomes LG, Rocha OL, Garcia A. Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy. J Alloy Compd. 2016;683:485–94.

    Article  CAS  Google Scholar 

  10. Souza F, Lima J, Rizziolli C, Magno I, Barros A, Moreira A, Rocha O. Microstructure and microhardness in horizontally solidified Al–7Si–0.15Fe–(3Cu; 0.3 Mg) alloys. Mater Sci Technol. 2019;34:1252–64.

    Article  CAS  Google Scholar 

  11. Costa TA, Moreira AL, Moutinho DJ, Dias M, Ferreira IL, Spinelli JE, Rocha OL, Garcia A. Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys. Mater Sci Technol. 2015;31:1103–12.

    Article  CAS  Google Scholar 

  12. Carvalho DB, Guimarães EC, Moreira AL, Moutinho DJ, Dias Filho JM, Rocha OL. Characterization of the Al-3wt%Si alloy in unsteadystate horizontal directional solidification. Mater Res. 2013;16:874–83.

    Article  CAS  Google Scholar 

  13. Peres MD, Siqueira CA, Garcia A. Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd. 2004;381:168–81.

    Article  CAS  Google Scholar 

  14. Rocha OL, Siqueira CA, Garcia A. Heat flow parameters affecting dendrite spacings during unsteady-state solidification of Sn–Pb and Al–Cu alloys. Metall Mater Trans A. 2003;34:995–1006.

    Article  Google Scholar 

  15. Sá F, Rocha OL, Siqueira C, Garcia A. The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn–Pb and Al–Cu alloys. Mater Sci Eng A. 2004;373:131–8.

    Article  CAS  Google Scholar 

  16. Canté MV, Spinelli JE, Cheung N, Garcia A. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al–Ni alloys. Met Mater Int. 2010;16:39–49.

    Article  CAS  Google Scholar 

  17. Spinelli JE, Ferreira IL, Garcia A. Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys. J Alloys Compd. 2014;384:217–26.

    Article  CAS  Google Scholar 

  18. Ferreira IL, Moutinho DJ, Gomes LG, Rocha OL, Goulart PR, Garcia A. Microstructural development in a ternary Al–Cu–Si alloy during transient solidification. Mater Sci Forum. 2010;636–637:643–50.

    Article  CAS  Google Scholar 

  19. Vasconcelos AJ, Kikuchi RH, Barros AS, Costa TA, Dias M, Moreira AL, Silva AP, Rocha OL. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt%Cu and multicomponent Al-6wt%Cu-8wt%Si alloys. An Acad Bras Ciênc. 2016;88:1099–111.

    Article  CAS  PubMed  Google Scholar 

  20. Araújo EC, Barros AS, Kikuchi RH, Silva AP, Gonçalves FA, Moreira AL, Rocha OL. The role of Si and Cu alloying elements on the dendritic growth and microhardness in horizontally solidified binary and multicomponent aluminum-based alloys. Metall Mater Trans A. 2017;48:1163–75.

    Article  CAS  Google Scholar 

  21. Kakitani R, Gouveia GL, Garcia A, Cheung N, Spinelli JE. Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. J Therm Anal Calorim. 2019;137:983–96.

    Article  CAS  Google Scholar 

  22. Osório WR, Freitas ES, Peixoto LC, Spinelli JE, Garcia A. The effects of tertiary dendrite arm spacing and segregation on the corrosion behavior of a Pb–Sb alloy for lead-acid battery components. J Power Sources. 2012;207:183–90.

    Article  CAS  Google Scholar 

  23. Spinelli JE, Silva BL, Garcia A. Assessment of tertiary dendritic growth and its effects on mechanical properties of directionally solidified Sn–0.7Cu–xAg solder alloys. J Electron Mater. 2014;43:1347–61.

    Article  CAS  Google Scholar 

  24. Barbosa CR, Lima JOM, Machado GMH, Azevedo HAM, Rocha FS, Barros AS, Rocha OFL. Relationship between aluminum-rich/intermetallic phases and microhardness of a horizontally solidified AlSiMgFe alloy. Mater Res. 2018;22(1):1–12.

    Article  CAS  Google Scholar 

  25. Souza FA, Magno IA, Costa MO, Barros AS, Nascimento JM, Carvalho DB, Rocha OL. Unsteady-state horizontal solidification of an Al–Si–Cu–Fe alloy: relationship between thermal parameters and microstructure with mechanical properties/fracture feature. Met Mater Int. 2019;25:18–33.

    Article  CAS  Google Scholar 

  26. Kaya H, Böyük U, Çadırlı E, Marasli N. Influence of growth rate on microstructure, microhardness, and electrical resistivity of directionally solidified Al-7 wt%Ni hypo-eutectic alloy. Met Mater Int. 2013;19:39–44.

    Article  CAS  Google Scholar 

  27. Acer E, Çadırlı E, Erol H, Gündüz M. Effect of growth rate on the microstructure and microhardness in a directionally solidified Al–Zn–Mg alloy. Metall Mater Trans A. 2016;47:3040–51.

    Article  CAS  Google Scholar 

  28. Osório WR, Siqueira CA, Santos CA, Garcia A. The correlation between electrochemical corrosion resistance and mechanical strength of As-cast Al–Cu and Al–Si alloys. Int J Electrochem Sci. 2011;6:6275–89.

    Google Scholar 

  29. Osório WR, Moutinho DJ, Peixoto LC, Ferreira IL, Garcia A. Macrosegregation and microstructure dendritic array affecting the electrochemical behaviour of ternary Al–Cu–Si alloys. Electrochim Acta. 2011;56:8412–21.

    Article  CAS  Google Scholar 

  30. Soares DCBL, Barros AS, Dias M, Moreira AL, Filho JC, Silva AP, Rocha OL. The role of thermal and microstructural parameters on corrosion resistance of unsteady-state horizontally solidified aluminum–copper hypoeutectic alloys. Int J Electrochem Sci. 2017;12:413–28.

    Article  CAS  Google Scholar 

  31. Rodrigues AV, Lima TS, Vida TA, Brito C, Garcia A, Cheung N. Microstructure and tensile/corrosion properties relationships of directionally solidified Al–Cu–Ni alloys. Met Mater Int. 2018;24:1058–76.

    Article  CAS  Google Scholar 

  32. Kaygisiz Y, Marasli N. Microstructural, mechanical, and electrical characterization of directionally solidified Al–Cu–Mg eutectic alloy. Met Metallogr. 2017;118:389–98.

    Article  CAS  Google Scholar 

  33. Cochard A, Zhu K, Joulié S, Douin J, Huez J, Robbiola L, Sciau P, Brunet M. Natural aging on Al–Cu–Mg structural hardening alloys—investigation of two historical duralumins for aeronautics. Mater Sci Eng A. 2017;690:259–69.

    Article  CAS  Google Scholar 

  34. Chen R, Shi YF, Xu QY, Liu B. Effect of cooling rate on solidification parameters and microstructure of Al–7Si-0.3Mg0.15Fe alloy. Trans Nonferrous Met Soc China. 2014;24:1645–52.

    Article  CAS  Google Scholar 

  35. Chen R, Xu Q, Guo H, Xia Z, Wu Q, Liu B. Correlation of solidification microstructure refining scale, Mg composition and heat treatment conditions with mechanical properties in Al–7Si–Mg cast aluminum alloys. Mater Sci Eng A. 2017;685:391–402.

    Article  CAS  Google Scholar 

  36. Azevedo HM, Machado GH, Barbosa CR, Rocha FS, Costa RB, Costa TA, Rocha OL. Microstructural development of an AlNiBi alloy and influence of the transient horizontal solidification parameters on microhardness. Metall Mater Trans A. 2018;49:4722–34.

    Article  CAS  Google Scholar 

  37. Gomes LG. Dendritic microstructure, macrosegregation and microporosity in the solidification of ternary Al–Si–Cu alloys. Ph.D. thesis. Faculty of Mechanical Engineering, State University of Campinas, Brazil; 2012.

  38. Gomes LG. Dendritic microstructure, analysis of microstructural evolution and formation of macrosegregation and microporosity in the unidirectional transient solidification of ternary Al–Cu–Si alloys. Ph.D. thesis. Faculty of Mechanical Engineering, State University of Campinas, Brazil; 2012.

  39. Brabo M, Kikuchi RHL, Barros AS, Moreira ALS, Rocha OL. Tertiary dendritic growth of Al–3wt%Cu–5.5wt%Si alloy during transient horizontal directional solidification. Holos. 2015;5:22–33.

    Google Scholar 

  40. Araújo RLM, Kikuchi RHL, Barros AS, Gomes LG, Moutinho DJC, Gonçalves FA, Moreira AS, Rocha OFL. Influence of upward and horizontal growth direction on microstructure and microhardness of an unsteady-state directionally solidified Al–Cu–Si alloy. Rev Mater. 2016;21(1):260–9.

    Google Scholar 

  41. Costa MO, Souza FVA, Magno IAB, Loayza C, Nascimento J, Barros A, Rocha OL. Interrelation of solidification processing variables and microstructure of a horizontally solidified Al-based 319.1 alloy. Mater Sci Medzg. 2017;23:124–8.

    Google Scholar 

  42. Curreri PA, Lee JE, Stefanescu DM. Dendritic solidification of alloys in low gravity. Metall Trans A. 1998;19:2671–6.

    Article  Google Scholar 

  43. Puncreobutr C, Lee PD, Kareh KM, Connolley T, Fife JL, Phillion AB. Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys. Acta Mater. 2014;68:42–51.

    Article  CAS  Google Scholar 

  44. Dinnis CM, Taylor JA, Dahle AK. Ironrelated porosity in Al–Si–(Cu) foundry alloys. Mater Sci Eng A. 2006;425:286–96.

    Article  CAS  Google Scholar 

  45. Warmuzek M. Aluminum-silicon casting alloys: an atlas of microfractographs. Cleveland: ASM International; 2004.

    Google Scholar 

  46. ASM International. ASM handbook: vol 12 fractography. Metals Park; 1987.

  47. Liu K, Cao X, Chen XG. Effect of Mn, Si and cooling rate on the formation of iron-rich intermetallics in 206 cast alloys. Metall Mater Trans B. 2012;43:1231–40.

    Article  CAS  Google Scholar 

  48. Moustafa MA. Effect of iron content on the formation of B-Al5FeSi and porosity in Al-Si eutectic alloys. J Mater Process Technol. 2009;209:605–10.

    Article  CAS  Google Scholar 

  49. Dinnis CM, Taylor JA, Dahle AK. Interactions between iron, manganese, and the Al-Si eutectic in hypoeutectic Al–Si alloys. Metall Mater Trans A. 2006;37:3283–91.

    Article  Google Scholar 

  50. Khalifa W, Samuel AM, Samuel FH, Doty HW, Valtierra S. Metallographic observations of β-AlFeSi phase and its role in porosity formation in Al–7%Si alloys. Int J Cast Met Res. 2006;19:156–66.

    Article  CAS  Google Scholar 

  51. Liu L, Mohamed AMA, Samuel AM, Samuel FH, Doty HW, Valtierra S. Precipitation of β Al 5 FeSi phase platelets in Al–Si based casting alloys. Metall Mater Trans A. 2009;40:2457–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by IFPA - Federal Institute of Education, Science and Technology of Pará, UFPA - Federal University of Pará; CNPq - National Council for Scientific and Technological Development (Grants 302846/2017-4 and 400634/2016- 3) and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil - Finance “Code 001.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio L. Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.O., Barbosa, C.R., Azevedo, H.M. et al. Thermal analysis via horizontal solidification of Al3Cu2Si (mass%) alloy: thermal and microstructural parameters, intermetallic compounds and microhardness. J Therm Anal Calorim 146, 2059–2071 (2021). https://doi.org/10.1007/s10973-020-10419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10419-1

Keywords

Navigation