Skip to main content
Log in

Thermal stability of optical fiber coatings: comparison of experimental thermogravimetric approaches

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of poly(methyl methacrylate) (PMMA) and four polymer coatings on optical fibers (single acrylate, dual acrylate, polyimide and a hard silicone) was studied via thermogravimetry (TG). Of main interest was the upper use temperature of the fibers, which can be estimated for a given continuous use time, assuming a certain failure criterion. Arrhenius parameters of the decomposition reaction (the activation energy and the pre-exponential factor) were determined via several model-free approaches: isothermal, Modulated TG (MTG) and four non-isothermal isoconversional approaches. The isothermal approach was considered as a benchmark for the other approaches. The MTG results disagreed markedly with the isothermal ones, and the discrepancy appears unrelated to the choice of the decomposition kinetics model. The non-isothermal isoconversion methods provide closer agreement with the isothermal data. Still, in a few examples, substantial discrepancies between the isothermal and non-isothermal data were observed. It is concluded that the isothermal approach is the best one to use for model-free determination of the Arrhenius parameters from TG. The temperatures for observation of the isothermal kinetics should be selected such that the preheating time is short in comparison with the decomposition time of the material under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Tur M. Optical fibers–basics. In: Thevenaz L, editor. Advanced fiber optics. Lausanne: EPFL Press; 2011. p. 1–27.

    Google Scholar 

  2. Schmid S, Toussaint AF. Optical fiber coatings. In: Mendez A, Morse TF, editors. Specialty Optical Fibers Handbook. Amsterdam: Elsevier; 2007. p. 95–122.

    Chapter  Google Scholar 

  3. Semjonov SL, Sapozhnikov DA, Erin DY, Zabegaeva ON, Kushtavkina IA, Nishchev KN, Vygodskii YS, Dianov EM. High-temperature polyimide coating for optical fibres. Quantum Electron. 2015;45(4):330–2.

    Article  CAS  Google Scholar 

  4. Severin I, Abdi RE, Poulain M. Strength measurements of silica optical fibers under severe environments. Optics Laser Tech. 2007;39(2):435–41.

    Article  CAS  Google Scholar 

  5. Mrotek JL, Matthewson MJ, Kurkjian C. Diffusion of moisture through optical fiber coatings. J Lightwave Tech. 2001;19(7):988–93.

    Article  CAS  Google Scholar 

  6. Murphy E, Shah P, Kelly J, Anderson T. New heat resistant UV cure coatings as protective overcoats for optical fiber applications. Proc. 58th Int. Wire & Cable Symp. 2009;2009:90–4.

    Google Scholar 

  7. Stolov AA, Simoff DA, Li J. Thermal stability of specialty optical fibers. J Lightwave Tech. 2008;26(20):3443–51.

    Article  Google Scholar 

  8. Stolov AA, Wrubel JA, Simoff DA. Thermal stability of specialty optical fiber coatings. Observation of kinetic compensation effect. J Therm Anal Calorim. 2016;124(3):1411–23.

    Article  CAS  Google Scholar 

  9. Wang S, Chen H, Zhang L. Thermal decomposition kinetics of rigid polyurethane foam and ignition risk by a hot particle. Appl Polym Sci. 2013;131(4):39359.

    Google Scholar 

  10. Ptacek P, Kubatova D, Havlica J, Brandstetr J, Soukal F, Opravil T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study. Thermochim Acta. 2010;501(1–2):24–9.

    Article  CAS  Google Scholar 

  11. Liu HM, Chen MQ, Fu BA. Isothermal kinetics based on two-periods scheme for co-drying of biomass and lignite. Thermochim Acta. 2013;573:25–31.

    Article  CAS  Google Scholar 

  12. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. J Polym Sci B Polym Lett. 1965;3(11):917–20.

    Article  CAS  Google Scholar 

  13. Broido A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci A. 1969;79(7):1761–73.

    Article  Google Scholar 

  14. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35(10):1464–8.

    Article  CAS  Google Scholar 

  15. Chan JH, Balke ST. The thermal degradation kinetics of polypropylene: part III. Thermogravimetric analysis. Polym Degrad Stab. 1997;57(2):135–49.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;240–341(14):53–68.

    Article  Google Scholar 

  17. Shih Y-F, Chieh Y-C. Thermal degradation behavior and kinetic analysis of biodegradable polymers using various comparative models, 1 Poly(butylene succinate). Macromol Theory Simul. 2007;16(1):101–10.

    Article  CAS  Google Scholar 

  18. Varhegyi G. Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrolysis. 2007;79(1–2):278–88.

    Article  CAS  Google Scholar 

  19. Aboyade AO, Carrier M, Meyer EL, Knoetze JH, Gorgens JF. Model fitting kinetic analysis and characterization of the devolatilization of coal blends with corn and sugarcane residues. Thermochim Acta. 2012;530(1):95–106.

    Article  CAS  Google Scholar 

  20. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  21. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  22. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6(1):183–95.

    Article  Google Scholar 

  23. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Joint convention of four electrical institutes. Sci Technol. 1971;16:22–31.

    Google Scholar 

  25. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97(Sep):491–7.

    Article  CAS  Google Scholar 

  26. Valapa R, Pugazhenthi G, Katiyar V. Thermal degradation kinetics of sucrose palmitate reinforces poly(lactic acid) biocomposites. Int J Biol Macromol. 2014;65(Apr):275–83.

    Article  CAS  PubMed  Google Scholar 

  27. Tikhani F, Hadavand BS, Bafghi HF, Jouyandeh M, Vahabi H, Formela K, Hosseini H, Paran SMR, Esmaeili A, Mohaddespour A, Saeb MR. Polyurethane/silane-functionalized ZrO2 nanocomposite powder coatings: thermal degradation kinetics. Coatings. 2020;10:413.

    Article  CAS  Google Scholar 

  28. Venkitaraja KP, Suresh S. Experimental thermal degradation analysis of pentaerythritol with alumina nano additives for thermal energy storage application. J Energy Storage. 2019;22:8–16.

    Article  Google Scholar 

  29. Wang Z, Wei R, Ning X, Xie T, Wang J. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2019;137(2):461–71.

    Article  CAS  Google Scholar 

  30. Ziglio MF, de Melo Azevedo E, Dweck J. Study of treatments to remove water from petroleum sludge and evaluation of kinetic parameters by thermal analysis using isoconversional methods. J Therm Anal Calorim. 2019;138(5):3603–18.

    Article  CAS  Google Scholar 

  31. Singh S, Chakraborty JP, Mondal MK. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel. 2020;259:116263.

    Article  CAS  Google Scholar 

  32. Singh A, Singh S, Soni PK, Mukherjee N. Non-isothermal thermogravimetric degradation kinetics, reaction models and thermodynamic parameters of vinylidene fluoride based fluorinated polymers. J Macromol Sci B. 2020;59(1):1–24.

    Article  CAS  Google Scholar 

  33. Santos FB, Miranda NT, Schiavon MIRB, Fregolente LV, Wolf Maciel MR. Thermal degradation kinetic of poly(acrylamide–co–sodium acrylate) hydrogel applying isoconversional methods. J Therm Anal Calorim. 2020, (in press).

  34. Pravin Kumar SA, Nagarajan R, Midhun Prasad K, Anand B, Murugavelh S. Thermogravimetric study and kinetics of banana peel pyrolysis: a comparison of ‘model-free’ methods. Biofuels. 2019. https://doi.org/10.1080/17597269.2019.1647375.

    Article  Google Scholar 

  35. Khanlari T, Bayat Y, Bayat M. Synthesis, thermal stability and kinetic decomposition of triblock copolymer polypropylene glycol–poly glycidyl nitrate–polypropylene glycol (PPG–PGN–PPG). Polym Bull. 2019. https://doi.org/10.1007/s00289-019-03051-z.

    Article  Google Scholar 

  36. Dubdub I, Al-Yaari M. Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction. Polymers. 2020;12(4):891.

    Article  CAS  PubMed Central  Google Scholar 

  37. Kuang W, Lu M, Yeboah I, Qian G, Duan X, Yang J, Chen D, Zhou X. A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from green river oil shale. Chem Eng J. 2018;377:120275.

    Article  CAS  Google Scholar 

  38. Bielejewski M, Lindner L, Pankiewicz R, Tritt-Goc J. The kinetics of thermal processes in imidazole-doped nanocrystalline cellulose solid proton conductor. Cellulose. 2020;27(4):1989–2001.

    Article  CAS  Google Scholar 

  39. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Dranca I, Fan X, Advincula R. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay nanocomposite. Macromol Rapid Commun. 2004;25(3):489–503.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  43. Sbirrazzuoli N, Vincent L, Mija A, Guido N. Integral, differential and advanced isoconversional methods. Complex mechanisms and isothermal predicted conversion-time curves. Chemometrics Intel Lab Syst. 2009;96(2):219–26.

    Article  CAS  Google Scholar 

  44. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105(3):757–66.

    Article  CAS  Google Scholar 

  45. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part II. Complex transformations. J Therm Anal Calorim. 2011;105(3):767–73.

    Article  CAS  Google Scholar 

  46. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part III. Isothermal and non-isothermal predictions. J Therm Anal Calorim. 2012;109(1):183–91.

    Article  CAS  Google Scholar 

  47. Budrugeac P. An iterative model-free method to determine the activation energy of non-isothermal heterogeneous processes. Thermochim Acta. 2010;511(1):8–16.

    Article  CAS  Google Scholar 

  48. Budrugeac P. Applicability of non-isothermal model-free predictions for assessment of conversion versus time curves for complex processes in isothermal and quasi-isothermal conditions. Thermochim Acta. 2013;558:67–73.

    Article  CAS  Google Scholar 

  49. Blaine R. Am Lab. 1998;30(1):21–3.

    CAS  Google Scholar 

  50. Blaine R, Hahn BK. Obtaining kinetic parameters by modulated thermogravimetry. J Therm Anal. 1998;54(2):695–704.

    Article  CAS  Google Scholar 

  51. Gracia-Fernandez CA, Gomez-Barreiro S, Ruiz-Salvador S, Blaine R. Study of the degradation of a thermoset system using TGA and modulated TGA. Progr Organ Coat. 2005;54(4):332–6.

    Article  CAS  Google Scholar 

  52. Carpier Y, Vieille B, Delpouve N, Dargent E. Isothermal and anisothermal decomposition of carbon fibres polyphenylene sulfide composites for fire behavior analysis. Fire Safety J. 2019;109:102868.

    Article  CAS  Google Scholar 

  53. Schneider IA, Hurduc N. Thermischer Abbau von linearen polymeren unter nicht isothermen bedingungen. Makromol Chem. 1977;178(2):547–55.

    Article  CAS  Google Scholar 

  54. Hirata T, Kashiwagi T, Brown JE. Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules. 1985;18(7):1410–8.

    Article  CAS  Google Scholar 

  55. Lee DC, Jang LW. Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization. J Appl Polym Sci. 1996;61(7):1117–22.

    Article  CAS  Google Scholar 

  56. Peterson JD, Vyazovkin S, Wight C. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B. 1999;103(38):8087–92.

    Article  CAS  Google Scholar 

  57. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79(2):271–81.

    Article  CAS  Google Scholar 

  58. Mansour AF. Photostability and optical parameters of copolymer styrene/MMA as a matrix for the dyes used in fluorescent solar collectors. Polym Testing. 2004;23(3):247–52.

    Article  CAS  Google Scholar 

  59. Kandare E, Deng H, Wang D, Hossenlopp JM. Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxyl methacrylate composites. Polym Adv Tech. 2006;17(4):312–9.

    Article  CAS  Google Scholar 

  60. Ahmad Z, Al-Awadi NA, Al-Sagheer F. Thermal degradation studies in poly(vinyl chloride)/poly(methyl methacrylate) blends. Polym Degrad Stab. 2008;93(2):456–65.

    Article  CAS  Google Scholar 

  61. Azimi HR, Rezaei M, Majidi F. The non-isothermal degradation kinetics of St-MMA copolymers. Polym Degrad Stab. 2014;99:240–8.

    Article  CAS  Google Scholar 

  62. Belhaneche-Bensemra N, Bedda A, Belaabed B. Study of the properties of rigid and plasticized PVC/PMMA blends. Macromol Symp. 2003;202(1):151–65.

    Article  CAS  Google Scholar 

  63. Hu YH, Chen CY, Wang CC. Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab. 2004;84(3):545–53.

    Article  CAS  Google Scholar 

  64. Zhang B, Blum FD. Thermogravimetric study of ultrathin PMMA films on silica: effect of tacticity. Thermochim Acta. 2003;396(1–2):211–7.

    Article  CAS  Google Scholar 

  65. Zhu J, Start P, Mauritz KA, Wilkie CA. Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stab. 2002;77(2):253–8.

    Article  CAS  Google Scholar 

  66. Song X, Wang X, Wang H, Du Q. PMMA-silica hybrid thin films with enhanced thermal properties prepared via a non-hydrolytic sol-gel process. Materials Chem Phys. 2008;109(1):143–7.

    Article  CAS  Google Scholar 

  67. Tatro SR, Baker GR, Bisht K, Harmon JP. A MALDI, TGA, TG/MS, and DEA study of irradiation effects on PMMA. Polymer. 2003;44(1):167–76.

    Article  CAS  Google Scholar 

  68. Prado AR, Leal-Junior AG, Marques C, Leite S, de Sena GL, Machado LC, Frizera A, Ribeiro MRN, Pontes MJ. Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Opt Express. 2017;25(24):30051–60.

    Article  CAS  PubMed  Google Scholar 

  69. Korobeinichev OP, Paletsky AA, Gonchikzhapov MB, Glaznev RK, Gerasimov IE, Naganovsky YK, Shundrina IK, Snegireve AY, Vinu R. Kinetics of thermal decomposition of PMMA at different heating rates and in a wide temperature range. Thermochim Acta. 2019;671:17–25.

    Article  CAS  Google Scholar 

  70. Abu-Bakar AS, Cran MJ, Moinuddin KAM. Experimental investigation of effects of variation in heating rate, temperature and heat flux on fire properties of a non-charring polymer. J Therm Anal Calorim. 2019;137(2):447–59.

    Article  CAS  Google Scholar 

  71. Da Ros S, Braido RS, de Souza e Castro NL, Brandão ALT, Schwaab M, Pinto JC. Modelling the chemical recycling of crosslinked poly(methyl methacrylate): kinetics of depolymerization. J Analyt Appl Pyrolysis. 2019;144:104706.

    Article  CAS  Google Scholar 

  72. Gamlin CD, Dutta NK, Choudhury NR, Kehoe D, Matisons J. Influence of ethylene-propylene ratio on the thermal degradation behavior of EPDM elastomers. Thermochim Acta. 2001;367–368:185–93.

    Article  Google Scholar 

  73. Wu Q, Yao F, Xu X, Mei C, Zhou D. Thermal degradation of rice straw fibers: global kinetic modeling with isothermal thermogravimetric analysis. J Indust Eng Chem. 2013;19(2):670–6.

    Article  CAS  Google Scholar 

  74. Mucha I, Baranowski P, Owczarek A, Gajda M, Pluta J, Gorniak A, Niklewicz P, Karolewicz B. Thermal stability and decomposition kinetics under non-isothermal conditions of imatinib mesylate α form. J Pharm Biomed Anal. 2016;129:9–14.

    Article  CAS  PubMed  Google Scholar 

  75. Valente SJ, Rodriguez-Gattorno G, Orta-Valle M, Torres-Garcia E. Thermal decomposition kinetics of MgAl layered double hydroxides. Mat Chem Phys. 2012;133(2–3):621–9.

    Article  CAS  Google Scholar 

  76. Gamlin CD, Dutta NK, Choudhury NR, Kehoe D, Matisons J. Evaluation of kinetic parameters of thermal and oxidative decomposition of base oils by conventional isothermal and modulated TGA, and pressure DSC. Thermochim Acta. 2002;392–393:357–69.

    Article  Google Scholar 

  77. Keuleers RR, Janssens JF, Desseyn HO. Comparison of some methods for activation energy determination of thermal decomposition reaction by thermogravimetry. Thermochim Acta. 2002;385(1–2):127–42.

    Article  CAS  Google Scholar 

  78. Miller JM, Kale UJ, Lau S-MK, Greene L, Wang HY. Rapid estimation of kinetic parameters for thermal decomposition of penicillins by modulated thermogravimetric analysis. J Pharm Biomed Anal. 2004;35(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  79. Saha B, Maili AK, Ghoshal AK. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta. 2006;444(1):46–52.

    Article  CAS  Google Scholar 

  80. Shih Y-F, Jeng R-. Carbon black-containing interpenetrating polymer networks based on unsaturated polyester/epoxy. II. Thermal degradation behavior and kinetic analysis. Polym Degrad Stab. 2002;77(1):67–76.

    Article  CAS  Google Scholar 

  81. Shih Y-F, Jeng R-J. Thermal degradation behavior and kinetic analysis of unsaturated polyester-based composites and IPNs by conventional and modulated thermogravimetric analysis. Polym Degrad Stab. 2006;91(4):823–31.

    Article  CAS  Google Scholar 

  82. Jeraal M, Roberts KJ, McRobbie I, Harbottle D. Assessment of the thermal degradation of sodium lauroyl isethionate using predictive isoconversional kinetics and a temperature-resolved analysis of evolved gases. Ind Eng Chem Res. 2019;58(19):8112–22.

    Article  CAS  Google Scholar 

  83. Ferreira LDL, Medeiros FS, Araujo BCR, Gomes MS, Rocco MLM, Sebastiao RCO, Calado HDR. Kinetic study of MWCNT and MWCNT@P3HT hybrid thermal decomposition under isothermal and non-isothermal conditions using the artificial neural network and isoconversional methods. Thermochim Acta. 2019;676:145–54.

    Article  CAS  Google Scholar 

  84. Das P, Tiwari P. Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim Acta. 2019;679:178340.

    Article  CAS  Google Scholar 

  85. Gao X, Jiang L, Xu Q, Wu W-Q, Mensah RA. Thermal kinetics and reactive mechanism of cellulose nitrate decomposition by traditional multi kinetics and modeling calculation under isothermal and non-isothermal conditions. Industrial Crops Products. 2020;145:112085.

    Article  CAS  Google Scholar 

  86. Williams ML, Dickmann JS, McCorkill ME, Hassler JC, Kiran E. The kinetics of thermal decomposition of 1-alkyl-3-methylimidazolium chloride Ionic liquids under isothermal and non-isothermal conditions. Thermochim Acta. 2020;685:178509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank our colleagues David Burgess, Hongchao Wu, Jie Li and Mei Wen for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Stolov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolov, A.A., Simoff, D.A. Thermal stability of optical fiber coatings: comparison of experimental thermogravimetric approaches. J Therm Anal Calorim 146, 1773–1789 (2021). https://doi.org/10.1007/s10973-020-10146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10146-7

Keywords

Navigation