Skip to main content
Log in

Thermal degradation properties of LDPE insulation for new and aged fine wires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of new and aged low-density polyethylene (LDPE) insulations was investigated using an SDT Q600 thermal analyzer. The activation energy and pyrolysis reaction model were estimated using the non-isothermal and masterplots methods. The thermal degradation processes present different behaviors of the LDPE insulations before and after thermal aging. The thermogravimetric curves shift to the direction of higher temperature, for the aged LDPE insulation. The values of activation energy evaluated using the Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) methods are almost same. However, the activation energy values estimated by the Friedman method were slightly higher than those obtained using the KAS and FWO methods. The suitable pyrolysis reaction models of the new and aged LDPE insulations were attributed to the “Contracting area” (R2) model, which was determined using the generalized masterplots method. In addition, the pre-exponential factor and compensation effect are discussed. Finally, it should be stressed that the aged LDPE insulation generally pyrolyzes more weakly and with more difficulty than the new insulation, i.e., the ignition and flame spread of aged wire in old buildings are not relatively easy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peacock A. Handbook of polyethylene: structures—properties, and applications. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  2. Oluwoye I, Altarawneh M, Gore J, Dlugogorski BZ. Oxidation of crystalline polyethylene. Combust Flame. 2015;162(10):3681–90.

    Article  CAS  Google Scholar 

  3. Xie Q, Zhang H, Tong L. Experimental study on the fire protection properties of PVC sheath for old and new cables. J Hazard Mater. 2010;179(1–3):373–81.

    Article  CAS  PubMed  Google Scholar 

  4. Wang C, Liu H, Zhang J, Yang S, Zhang Z, Zhao W. Thermal degradation of flame-retarded high-voltage cable sheath and insulation via TG-FTIR. J Anal Appl Pyrolysis. 2018;11:1997.

    Google Scholar 

  5. He H, Zhang Q, Tu R, Zhao L, Liu J, Zhang Y. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. J Hazard Mater. 2016;320:628–34.

    Article  CAS  PubMed  Google Scholar 

  6. Wang G, Li W, Li B, Chen H. TG study on pyrolysis of biomass and its three components under syngas. Fuel. 2008;87(4–5):552–8.

    Article  CAS  Google Scholar 

  7. Ding Y, Ezekoye OA, Lu S, Wang C, Zhou R. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energ Convers Manage. 2017;132:102–9.

    Article  CAS  Google Scholar 

  8. Martın-Gullon I, Esperanza M, Font R. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate)(PET). J Anal Appl Pyrolysis. 2001;58:635–50.

    Article  Google Scholar 

  9. Anderson DA, Freeman ES. The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci Part A Polym Chem. 1961;54(159):253–60.

    CAS  Google Scholar 

  10. Conesa JA, Marcilla A, Font R, Caballero JA. Thermogravimetric studies on the thermal decomposition of polyethylene. J Anal Appl Pyrolysis. 1996;36(1):1–15.

    Article  CAS  Google Scholar 

  11. Cho Y-S, Shim M-J, Kim S-W. Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys. 1998;52(1):94–7.

    Article  CAS  Google Scholar 

  12. Bockhorn H, Hornung A, Hornung U, Schawaller D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrolysis. 1999;48(2):93–109.

    Article  CAS  Google Scholar 

  13. Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stabil. 2000;67(3):535–40.

    Article  CAS  Google Scholar 

  14. Aboulkas A, El Harfi K, El Bouadili A. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energ Convers Manage. 2008;49(12):3666–71.

    Article  CAS  Google Scholar 

  15. Aboulkas A, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manage. 2010;51(7):1363–9.

    Article  CAS  Google Scholar 

  16. Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection. Thermochim Acta. 2017;654:191–202.

    Article  CAS  Google Scholar 

  17. Encinar JM, González JF. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process Technol. 2008;89(7):678–86.

    Article  CAS  Google Scholar 

  18. Beneš M, Milanov N, Matuschek G, Kettrup A, Plaček V, Balek V. Thermal degradation of PVC cable insulation studied by simultaneous TG-FTIR and TG-EGA methods. J Therm Anal Calorim. 2004;78(2):621–30.

    Article  Google Scholar 

  19. Henrist C, Rulmont A, Cloots R, Gilbert B, Bernard A, Beyer G. Toward the understanding of the thermal degradation of commercially available fire-resistant cable. Mater Lett. 2000;46(2–3):160–8.

    Article  CAS  Google Scholar 

  20. Mo S-j, Zhang J, Liang D, Chen H-y. Study on pyrolysis characteristics of cross-linked polyethylene material cable. Proc Eng. 2013;52:588–92.

    Article  CAS  Google Scholar 

  21. Sebaa M, Servens C, Pouyet J. Natural and artificial weathering of low-density polyethylene (LDPE): calorimetric analysis. J Appl Polym Sci. 1993;47(11):1897–903.

    Article  CAS  Google Scholar 

  22. Nedjar M. Effect of thermal aging on the electrical properties of crosslinked polyethylene. J Appl Polym Sci. 2009;111(4):1985–90.

    Article  CAS  Google Scholar 

  23. Wang Y, Wang C, Zhang Z, Xiao K. Effect of nanoparticles on the morphology, thermal, and electrical properties of low-density polyethylene after thermal aging. Nanomaterials. 2017;7(10):320.

    Article  CAS  PubMed Central  Google Scholar 

  24. Boukezzi L, Boubakeur A. Effect of thermal aging on the electrical characteristics of XLPE for HV cables. Trans Electr Electron Mater. 2018;19(5):344–51.

    Article  Google Scholar 

  25. Geng P, Song J, Tian M, Lei Z, Du Y. Influence of thermal aging on AC leakage current in XLPE insulation. AIP Adv. 2018;8(2):025115.

    Article  CAS  Google Scholar 

  26. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol Chem Phys. 2001;202(6):775–84.

    Article  CAS  Google Scholar 

  27. Piiroja E, Lippmaa H, editors. Thermal degradation of polyethylene. Makromolekulare chemie. Macromolecular symposia. New York: Wiley; 1989.

    Google Scholar 

  28. Yang J, Miranda R, Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degrad Stabil. 2001;73(3):455–61.

    Article  Google Scholar 

  29. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  30. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  31. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  33. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Aa Burnham, et al. Computational aspects of kinetic analysis: Part A—the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355(1–2):125–43.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  35. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1962;6(19):239–51.

    Article  Google Scholar 

  36. Xu L, Jiang Y, Wang L. Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers Manage. 2017;146:124–33. https://doi.org/10.1016/j.enconman.2017.05.020.

    Article  CAS  Google Scholar 

  37. Tiwari P, Deo M. Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J. 2012;58(2):505–15.

    Article  CAS  Google Scholar 

  38. Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018;1:1–17.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFC0809500). The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wei, R., Ning, X. et al. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim 137, 461–471 (2019). https://doi.org/10.1007/s10973-018-7957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7957-5

Keywords

Navigation