Skip to main content
Log in

An analytical method for overlapping of the melting and decomposition of 2-oximemalononitrile

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the thermal analysis of many energetic compounds, there is a phenomenon of melting before decomposition, and the melting endothermic process is masked by the subsequent rapid exothermic decomposition, which has affected the research of separation in melting and thermal decomposition processes. 2-oximemalononitrile, an energetic intermediate whose melting and decomposition processes had the overlapping, was used as the research object in this paper, and the complete melting and decomposition processes were acquired by MATLAB software, separately. In addition, the kinetics and mechanism of thermal decomposition of 2-oximemalononitrile were investigated by Málek method, which was used as guidance for the safe application in handling, processing, and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang GY, Jin SH, Li LJ, Li ZH, Shu QH, Wang DQ, Zhang B, Li YK. Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG. J Therm Anal Calorim. 2016;126:1223–30.

    Article  CAS  Google Scholar 

  2. Yuan B, Yu ZJ, Bernstein ER. Initial mechanisms for the decomposition of electronically excited energetic salts: 2-oximemalononitrile and MAD-X1. J Phys Chem A. 2015;119:2965–81.

    Article  CAS  Google Scholar 

  3. Niu H, Chen SS, Jin SH, Li LJ, Jing BC, Jiang ZM, Ji JW, Shu QH. Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate. J Therm Anal Calorim. 2016;126:473–80.

    Article  CAS  Google Scholar 

  4. Mirzajani V, Farhadi K, Pourmortazavi SM. Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim. 2018;131:937–48.

    Article  CAS  Google Scholar 

  5. Yan QL, Zeman S, Zhang JG, Qi XF, Li T, Musil T. Multistep thermolysis mechanisms of azido-s-triazine derivatives and kinetic compensation effects for the rate-limiting processes. J Phys Chem C. 2015;119:14861–72.

    Article  CAS  Google Scholar 

  6. Pourmortazavi SM, Mirzajani V, Farhadi K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. 2018;137:93–104.

    Article  Google Scholar 

  7. Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2018;125:121–8.

    Article  Google Scholar 

  8. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Jabbarzadeh Y, Javidan A. Effect of nanomaterials on thermal stability of 1,3,6,8-Tetranitro Carbazole. Cent Eur J Energ Mater. 2017;14:201–16.

    Article  CAS  Google Scholar 

  9. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Besharati-Seidani A, Javidan A. Role of metal oxide nanomaterials on thermal stability of 1,3,6-Trinitrocarbazole. Propellants, Explos, Pyrotech. 2016;41:912–8.

    Article  CAS  Google Scholar 

  10. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim. 2016;124:935–41.

    Article  CAS  Google Scholar 

  11. Kossoy A, Akhmetshin Y. Identification of kinetic models for the assessment of reaction hazards. Process Saf Prog. 2007;26:209–20.

    Article  CAS  Google Scholar 

  12. Zhang JQ, Gao HX, Ji TZ, Xu KZ, Hu RZ. Non-isothermal decomposition kinetics, heat capacity and thermal safety of 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture. J Hazard Mater. 2011;193:183–7.

    Article  CAS  Google Scholar 

  13. Xu KZ, Song JR, Zhao FQ, Ma HX, Gao HX, Chang CR, Ren YH, Hu RZ. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158:333–9.

    Article  CAS  Google Scholar 

  14. Yi JH, Zhao FQ, Wang BZ, Liu Q, Zhou C, Hu RZ, Ren YH, Xu SY, Xu KZ, Ren XN. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater. 2010;181:432–9.

    Article  CAS  Google Scholar 

  15. Liu ZR, Yin CM, Liu Y, Fan XP, Zhao FQ. Thermal decomposition of RDX and HMX part II: kinetic parameters and kinetic compensation effects. Chin J Explos Propell. 2004;27:72–9.

    CAS  Google Scholar 

  16. Tang Z, Ren Y, Yang L, Zhang TL, Qiao XJ, Zhang JG, Zhou ZN. A new way to estimate the thermal decomposition mechanism function and thermal safety of RDX. Chin J Explos Propell. 2011;34:19–24.

    Google Scholar 

  17. Gao DY, He SW, Shen YX, Zhou JH. Thermal decomposition kinetics of GI-920 explosive. Chin J Energ Mater. 2008;16:1–4.

    CAS  Google Scholar 

  18. Zhang J, Xue B, Rao GN, Chen LP, Chen WH. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2017;133:1–9.

    Google Scholar 

  19. Zhang CX, Lu GB, Chen LP, Chen WH, Peng MJ, Lv JY. Two decoupling methods for non-isothermal DSC results of AIBN decomposition. J Hazard Mater. 2015;285:61–8.

    Article  CAS  Google Scholar 

  20. Zhu YL, An J, Ding L, Bi FQ, Zhou J, Liang Y. Research on thermal decomposition of dihydroxylammonium 5,5′-bistetrazole- 1,1′-diolate (TKX-50) by decoupling method. Chin J Energ Mater. 2019;27:685–91.

    Google Scholar 

  21. Málek J. The kinetic-analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  22. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  23. Málek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  Google Scholar 

  24. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  25. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se-Te glassy system. J Non-Cryst Solids. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  26. Svoboda R, Málek J. Thermal behavior in Se-Te chalcogenide system: interplay of thermodynamics and kinetics. J Chem Phys. 2014;141:224507.

    Article  Google Scholar 

  27. Barták J, Martinková S, Málek J. Crystal growth kinetics in Se-Te bulk glasses. Cryst Growth Des. 2015;15:4287–95.

    Article  Google Scholar 

  28. Hammam MAS, Abdel-Rahim MA, Hafiz MM, Abu-Sehly AA. New combination of non-isothermal kinetics-revealing methods. J Therm Anal Calorim. 2017;128:1391–405.

    Article  CAS  Google Scholar 

  29. Yan QL, Zeman S, Sánchez Jiménez PE, Zhao FQ, Pérez-Maqueda LA, Málek J. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J Hazard Mater. 2014;271:185–95.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  31. Yan QL, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12.

    Article  CAS  Google Scholar 

  32. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation. J Therm Anal Calorim. 2016;126:981–93.

    Article  CAS  Google Scholar 

  33. Yan QL, Zeman S, Elbeih A. Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562:56–64.

    Article  CAS  Google Scholar 

  34. Arulsamy N, Bohle DS. Nucleophilic addition of hydroxylamine, methoxylamine, and hydrazine to malononitrileoxime. J Org Chem. 2000;65:1139–43.

    Article  CAS  Google Scholar 

  35. Zhou YS, Wang BZ, Li JK, Zhou C, Hu L, Chen ZQ, Zhang ZZ. Study on synthesis, characterization and properties of 3,4-bis(4′-nitrofurazano-3′-yl)furoxan. Chin Acta Chimica Sinica. 2011;69:1673–80.

    CAS  Google Scholar 

  36. Zhou YS, Zhou C, Wang BZ, Li JK, Huo H, Zhang YG, Wang XJ, Luo YF. Synthesis of 3-amino-4-amidoximinofurazan with high yield. Chin J Energy Mater. 2011;19:509–12.

    CAS  Google Scholar 

  37. Niu H, Chen SS, Shu QH, Li LJ, Jin SH. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5-bistetrazole-1,1-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.

    Article  CAS  Google Scholar 

  38. Lin CP, Chang CP, Chou YC, Chu YC, Shu CM. Modeling solid thermal explosion containment on reactor HNIW and HMX. J Hazard Mater. 2010;176:549–58.

    Article  CAS  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  40. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press; 2008. pp. 1–20, 149–65.

Download references

Acknowledgements

This investigation received financial assistance from the National Natural Science Foundation of China (Grant No. 21503162) and the Youth Innovation Fund of Xi’an Modern Chemistry Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YL., An, J., Chang, H. et al. An analytical method for overlapping of the melting and decomposition of 2-oximemalononitrile. J Therm Anal Calorim 146, 1803–1809 (2021). https://doi.org/10.1007/s10973-020-10141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10141-y

Keywords

Navigation