Skip to main content
Log in

Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Catalytic effect of magnesium oxide nanoparticles (nano-MgO) on the thermal behavior and decomposition reaction kinetic of the double-base propellant formulation was investigated in order to model the thermal degradation process. Thermal analysis studies were performed by various techniques, i.e., simultaneous thermogravimetry–differential thermogravimetry (TG–DTG) and differential scanning calorimetry (DSC). The results showed that magnesium oxide nanoparticles significantly change thermal pattern of the studied propellant. Non-isothermal DSC data were used to predict the thermokinetic parameters such as activation energy, frequency factor, the critical ignition temperature of thermal explosion, the self-accelerating decomposition temperature and thermodynamic parameters of the studied propellant via two well-known integral methods (i.e., Coats–Redfern and Flynn–Wall–Ozawa) and also two differential methods (i.e., Kissinger and Starink). The resulted data showed that nano-MgO could change the thermal decomposition mechanism function and the corresponding kinetic equation to thermal degradation of the propellant sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirzajani V, Farhadi K, Pourmortazavi SM. Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim. 2018;131:937–48.

    Article  CAS  Google Scholar 

  2. Rossi C. Two decades of research on nano-energetic materials. Propellants Explos Pyrotech. 2014;39(3):323–7.

    Article  CAS  Google Scholar 

  3. Chehroudi B. Supercritical fluids: nanotechnology and select emerging applications. Combust Sci Technol. 2006;178(1–3):555–621.

    Article  CAS  Google Scholar 

  4. Pourmortazavi SM, Sadri M, Rahimi-Nasrabadi M, Shamsipur M, Jabbarzade Y, Shafaghi Khalaki M, Abdollahi M, Shariatinia Z, Kohsari I, Atifeh SM. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorim. 2015;119:281–90.

    Article  CAS  Google Scholar 

  5. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci. 2014;60:208–337.

    Article  CAS  Google Scholar 

  6. Pang W, Decula L, Fan X, Maggi F, Xu H, Xie W, Shi X. Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. J Combust Sci Technol. 2016;188:315–28.

    Article  CAS  Google Scholar 

  7. Nayak H, Jena AK. Catalyst effect of transition metal nano oxides on the decomposition of lanthanum oxalate hydrate: a thermogravimetric Study. Int J Sci Res (IJSR). 2014;3:381–8.

    Google Scholar 

  8. Shamsipur M, Pourmortazavi SM, Roushani M, Miran Beigi AA. Thermal behavior and non-isothermal kinetic studies on titanium hydride-fueled binary pyrotechnic compositions. Combust Sci Technol. 2013;185:122–33.

    Article  CAS  Google Scholar 

  9. Rogers RN, Smith LC. Estimation of preexponential factor from thermal decomposition curve of a weighed sample. J Anal Chem. 1967;39:1024.

    Article  CAS  Google Scholar 

  10. Mohan Murali BK, Ganesan V, Rao KB, Mohan VK. Hazard characteristics of isosorbide dinitrate–lactose mixtures. J Hazard Mater. 1979;3(2):177–82.

    Article  Google Scholar 

  11. Sunitha M, Reghunadhan Nair CP, Krishnan K, Ninan KN. Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides-a DSC study. Thermochim Acta. 2001;374:159–69.

    Article  CAS  Google Scholar 

  12. Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG. Thermal study of HNIW (CL-20). Thermochim Acta. 2005;433:105–15.

    Article  CAS  Google Scholar 

  13. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim. 2016;124:935–41.

    Article  CAS  Google Scholar 

  14. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Jabbarzadeh Y, Javidan A. Effect of nanomaterials on thermal stability of 1,3,6,8-tetranitro carbazole. Cent Eur J Energ Mater. 2017;14:201–16.

    Article  CAS  Google Scholar 

  15. Om Reddy G, Srinivasa Rao A. Stability studies on pentaerytritol tetranitrate. Propellants Explos Pyrotech. 1992;17:307.

    Article  Google Scholar 

  16. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials. J Therm Anal Calorim. 2012;110:857.

    Article  CAS  Google Scholar 

  17. Mirzaei M, Lippolis V, Carla Aragoni M, Ghanbari M, Shamsipur M, Meyer F, Demeshko S, Pourmortazavi SM. Extended structures in copper(II) complexes with 4-hydroxypyridine-2,6 dicarboxylate and pyrimidine derivative ligands: X-ray crystal structure, solution and magnetic studies. Inorg Chim Acta. 2014;418:126–35.

    Article  CAS  Google Scholar 

  18. Shamsipur M, Miran Beigi AA, Teymouri M, Pourmortazavi SM, Irandoust M. Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3methylimidazolium trifluoromethanesulfonate and 1-butyl-1methylpyrrolidinium bis(trifluoromethyl-sulfonyl) imide. J Mol Liq. 2010;157:43–50.

    Article  CAS  Google Scholar 

  19. Singh G, Kapoor IPS, Mannan SM, Kaur J. Studies on energetic compounds, part 8: thermolysis of salts of HNO3 and HClO4. J Hazard Mater. 2000;A79:1–18.

    Article  Google Scholar 

  20. Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J Hazard Mater. 2006;A132:155–64.

    Article  CAS  Google Scholar 

  21. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162:1557–62.

    Article  CAS  PubMed  Google Scholar 

  22. Mishakov IV, Bedilo AF, Richards RM, Chesnokov VV, Volodin AM, Zaikovskii VI, Buyanov RA, Klabunde KJ. Nanocrystalline MgO as a dehydrohalogenation catalyst. J Catal. 2002;206(1):40–8.

    Article  CAS  Google Scholar 

  23. Sutradhar N, Sinhamahapatra A, Pahari SK, Pal P, Bajaj HC, Mukhopadhyay I, Panda AB. Controlled synthesis of different morphologies of MgO and their use as solid base catalysts. J Phys Chem C. 2011;115(25):12308–16.

    Article  CAS  Google Scholar 

  24. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. J Chem Mater. 2001;13(2):435–40.

    Article  CAS  Google Scholar 

  25. Talawar MB, Makashir PS, Nair JK, Pundalik SM, Mukundan T, Asthana SN, Singh SN. Studies on diaminoglyoxime (DAG): thermolysis and evaluation as ballistic modifier in double base propellant. J Hazard Mater. 2005;A 125:17–22.

    Article  CAS  PubMed  Google Scholar 

  26. Yi JH, Zhao FQ, Hong WL, Xu SY, Hu RZ, Chen ZQ, Zhang LY. Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant. J Hazard Mater. 2010;176:257–61.

    Article  CAS  PubMed  Google Scholar 

  27. Shahidzadeh M, Shabihi P, Pourmortazavi SM. Sonochemical preparation of copper(II) chromite nanocatalysts and particle size optimization via Taguchi method. J Inorg Organomet Polym. 2015;25:986–94.

    Article  CAS  Google Scholar 

  28. Wu W, He Q, Jiang Ch. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies.J. Nanoscale Res Lett. 2008;3:397–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  30. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics (in Chinese). 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  31. Ma HX, Song JR, Hu RZ. Non-isothermal kinetics of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex. Chin J Chem. 2003;21(12):1558–61.

    Article  CAS  Google Scholar 

  32. Hu RZ, Chen SP, Gao SL, Zhao FQ, Luo Y, Gao HX, Shi QZ, Zhao HA, Yao P, Li J. Thermal decomposition kinetics of Pb0.25Ba0.75(TNR)·H2O complex. J Hazard Mater. 2005;A117:103–10.

    Article  CAS  Google Scholar 

  33. Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016;125:121–8.

    Article  CAS  Google Scholar 

  34. Ma HX, Song JR, Zhao FQ, Hu RZ, Xiao HM. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3,3,1] onan-3,7-dione (TNPDU). J Chem Phys. 2007;A111:8642–9.

    Article  CAS  Google Scholar 

  35. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  36. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Besharati-Seidani A, Javidan A. Role of metal oxide nanomaterials on thermal stability of 1,3,6-trinitrocarbazole. Propellants Explos Pyrotech. 2016;41:912–8.

    Article  CAS  Google Scholar 

  37. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.

    Article  CAS  Google Scholar 

  38. Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357–358:169–75.

    Article  Google Scholar 

  39. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the pre-exponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  40. Fathollahi M, Behnejad H. A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al. J Therm Anal Calorim. 2015;120:1483–92.

    Article  CAS  Google Scholar 

  41. ASTM E698-11. Standard test method for arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method. West Conshohocken: ASTM International; 2011. https://doi.org/10.1520/E0698-11. Accessed 2017.

  42. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169:1068–73.

    Article  CAS  PubMed  Google Scholar 

  43. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.

    Article  CAS  Google Scholar 

  44. Ebrahimi-Kahrizsangi R, Abbasi MH. Evaluation of reliability of Coats–Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Metals Soc China. 2008;18:217–21.

    Article  CAS  Google Scholar 

  45. Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energ Mater. 2012;30:97–106.

    Article  CAS  Google Scholar 

  46. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

  47. Tompa AS, Boswell RF. DSC and TG study of the stability in vacuum of ferrocenyl compounds and their compatibility with ammonium perchlorate. Thermochim Acta. 1984;77:133–50.

    Article  CAS  Google Scholar 

  48. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  49. Chen P, Zhao FQ, Luo Y, Hu RZ, Gao SL, Zheng YM, Deng M-Z, Gao Y. Thermal decomposition behavior and non-isothermal decomposition reaction of copper(II) salt of 4-hydroxy-3,5-dinitropyridine oxide and its application in solid rocket propellant. J Chem. 2004;22:1056–63.

    CAS  Google Scholar 

  50. Yi JH, Zhao FQ, Wang BZ, Liu Q, Zhou C, Hu RZ, Ren YH, Xu SY, Xu KZ, Ren XN. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater. 2010;181:432–9.

    Article  CAS  PubMed  Google Scholar 

  51. Li YF, Zhai L, Xu KZ, Wang BZ, Song JR, Zhao FQ. Thermal behaviors of a novel nitrogen-rich energetic compound: hydrazinium 3,5-dinitroamino-1,2,4-triazole. J Therm Anal Calorim. 2016;126:1167–73. https://doi.org/10.1007/s10973-016-5662-9.

    Article  CAS  Google Scholar 

  52. Weijian N, Xiaopeng C, Linlin W, Jiezhen L, Lingping Z, Zhangfa T. Thermal decomposition kinetics of abietic acid in static air. Chin J Chem. 2013;21(7):724–9.

    Article  CAS  Google Scholar 

  53. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. J Nat. 1964;201:68–9.

    Article  CAS  Google Scholar 

  54. Shamsipur M, Pourmortazavi SM, Beigi AAM, Heydari R, Khatibi M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech. 2013;14:287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.

    Article  CAS  Google Scholar 

  56. Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    Article  CAS  Google Scholar 

  57. Pourmortazavi SM, Babaee S, Shamsi Ashtiani F. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer. Appl Surf Sci. 2015;349:817–25.

    Article  CAS  Google Scholar 

  58. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmortazavi, S.M., Mirzajani, V. & Farhadi, K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim 137, 93–104 (2019). https://doi.org/10.1007/s10973-018-7904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7904-5

Keywords

Navigation