Skip to main content
Log in

Thermal deactivation kinetics and thermodynamics of a silica gel using surface area data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new calculation method was presented using surface area data for the thermal analysis of adsorbents. Five parts from a silica gel (Hypersil) were heated at the temperatures of 500, 640, 700, 770, and 850 °C, respectively, for 16 h. The maximum adsorption capacity as liquid nitrogen volume (0.930 cm3 g−1), monolayer capacity (0.093 cm3 g−1), surface area (AH = 245 m2 g−1), number of monolayer (10) in the multimolecular adsorption, and heat of the first layer (3300 J mol−1) were evaluated from the nitrogen adsorption data obtained at − 196 °C. Surface area (A) of the preheated samples was determined similarly. The assumed parameters \(k = - (\partial A/\partial T)_{\text{p}} / A\) and \(K = \left( {1 - a} \right)/ a\) were calculated for each preheating temperature, where \(a = A/A_{\text{H}}\) is the relative decrease in the surface area by the thermal deactivation, because the k and K supplying Arrhenius equations and van’t Hoff equation behave as reaction rate constant and equilibrium constant, respectively. The activation energy for the thermal deactivation of the silica gel was calculated as \(E^{\# } = 27330\) J mol−1 from the slope of a straight line which is plotted according to the Arrhenius equation. The enthalpy change \((\Delta H^{0} = 28936\) J mol−1) and entropy change (\(\Delta S^{0} = 47.42\) J mol−1 K−1) for the same case were, respectively, evaluated from the slope and intercept of a straight line which is plotted according to the van’t Hoff equation. Accordingly, temperature dependence of the Gibbs energy is written as \(\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} = 28936 - 47.42 T\) by the SI units. The spontaneous nature of the deactivation was discussed using the last relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Temuujin J, Okada K, MacKenzie KJD. Preparation of porous silica from vermiculite by selective leaching. Appl Clay Sci. 2003;22:187–95.

    Article  CAS  Google Scholar 

  2. Beygi H, Karimi EZ, Farazi R, Ebrahimi F. A statistical approach to synthesis of functionally modified silica nanoparticles. J Alloys Compd. 2016;654:308–14.

    Article  CAS  Google Scholar 

  3. Kato N, Kato N. High-yield hydrothermal synthesis of mesoporous silica hollow capsules. Micropor Mesopor Mat. 2016;219:230–9.

    Article  CAS  Google Scholar 

  4. Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P, Maurin G. Adsorption by powders and porous solids. Amsterdam: Elsevier; 2014.

    Google Scholar 

  5. Sah RP, Choudhury B, Das RK. A review on adsorption cooling systems with silica gel and carbon as adsorbents. Renew Sust Energ Rev. 2015;45:123–34.

    Article  CAS  Google Scholar 

  6. Wong JCH, Kaymak H, Tingaut P, Brunner S, Koebel MM. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mat. 2015;217:150–8.

    Article  CAS  Google Scholar 

  7. Hu X, Yan X, Zhou M, Komarneni S. One-step synthesis of nanostructured mesoporous ZIF-8/silica composites. Micropor Mesopor Mat. 2016;219:311–6.

    Article  CAS  Google Scholar 

  8. Núñez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A. 2008;1191:231–52.

    Article  CAS  Google Scholar 

  9. Mignot M, Sebban M, Tchapla A, Mercier O, Cardinael P, Peulon Agasse V. Thermal pretreatments of superficially porous silica particles for high-performance liquid chromatography: surface control, structural characterization and chromatographic evaluation. J Chromatogr A. 2015;1419:45–57.

    Article  CAS  Google Scholar 

  10. Skubiszewska-Zieba J, Khalameida S, Sydorchuk V. Comparison of surface properties of silica xero-and hydrogels hydrothermally modified using mechanical, microwave and classical methods. Colloid Surf A: Physicochem Eng Aspects. 2016;504:139–53.

    Article  CAS  Google Scholar 

  11. Rashid Mst R, Afroze F, Ahmed S, Miran MS, Susan Md ABH. Control of porosity and morphology of ordered mesoporous silica by varying calcination conditions. Mater Today. 2019;15:546–54.

    Google Scholar 

  12. Scherer GW. Effect of drying on properties of silica gel. J Non-Cryst Solids. 1997;215:155–68.

    Article  CAS  Google Scholar 

  13. Zhuravlev LT. The surface chemistry of amorphous silica: Zhuravlev model. Colloid Surf A: Physicochem Eng Aspects. 2000;173:1–38.

    Article  CAS  Google Scholar 

  14. Putz F, Waag A, Balzer C, Braxmeier S, Elsaesser MS, Ludescher L, Paris O, Malfait WJ, Reichenauer G, Hüsing N. The influence of drying and calcination on surface chemistry, pore structure and mechanical properties of hierarchically organized porous silica. Micropor Mesopor Mat. 2019;288:109578.

    Article  CAS  Google Scholar 

  15. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley; 1979.

    Google Scholar 

  16. Shen S, Sun P, Yang L, Song S, Li W, Hu D. Colloidal liquid aphrons directed growth of sol-gel silica exhibiting bimodal porosities. Micropor Mesopor Mat. 2015;214:64–9.

    Article  CAS  Google Scholar 

  17. Krasucka P, Stefaniak W, Kierys A, Goworek J. One-pot synthesis of two different highly porous silica materials. Micropor Mesopor Mat. 2016;221:14–22.

    Article  CAS  Google Scholar 

  18. Bayram H, Önal M, Yılmaz H, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101:873–9.

    Article  CAS  Google Scholar 

  19. Ek S, Peussa M, Ninisto L. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta. 2001;379:201–12.

    Article  CAS  Google Scholar 

  20. Noyan H, Önal M, Sarıkaya Y. Thermal deformation thermodynamics of a smectite mineral. J Therm Anal Calorim. 2008;91:299–303.

    Article  CAS  Google Scholar 

  21. Bayram H, Önal M, Üstünışık G, Sarıkaya Y. Some thermal characteristics of a mineral mixture of palygorskite, metahalloysite, magnesite, and dolomite. J Therm Anal Calorim. 2007;89:169–74.

    Article  CAS  Google Scholar 

  22. Sarıkaya Y, Önal M. High temperature carburizing of a stainless steel with uranium carbide. J Alloy Compd. 2012;542:253–6.

    Article  CAS  Google Scholar 

  23. Wang Z, Marin G, Naterer GF, Gabriel KS. Thermodynamics and kinetics of the thermal decomposition cupric chloride in its hydrolysis reaction. J Therm Anal Calorim. 2015;119:815–23.

    Article  CAS  Google Scholar 

  24. Barneto AG, Carmona JA, Garrido MJF. Thermogravimetric assessment of thermal degradation in asphaltenes. Thermochim Acta. 2016;627–629:1–8.

    Google Scholar 

  25. Ada K, Önal M, Sarıkaya Y. Investigation of the intra-particle sintering kinetics of a mainly agglomerated alumina powder by using surface reduction. Powder Technol. 2006;168:37–41.

    Article  CAS  Google Scholar 

  26. Liang F, Zhang T, Xiang H, Yang X, Hu W, Mi B, Liu Z. Pyrolysis characteristics of cellulose derived from moso bamboo and poplar. J Therm Anal Calorim. 2018;132:1359–65.

    Article  CAS  Google Scholar 

  27. Zhu X, He Q, Hu Y, Huang R, Shan N, Gao Y. A comparative study of structure, thermal degradation, and combustion behavior of starch from different plant sources. J Therm Anal Calorim. 2018;132:927–35.

    Article  CAS  Google Scholar 

  28. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  29. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  30. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.

    Article  CAS  Google Scholar 

  31. Du R, Wu K, Zhang L, She Y, Xu D, Chao C, Qin X, Zhang B. Thermal behavior and kinetic study on the pyrolysis of Shenfu coal by sectioning method. J Therm Anal Calorim. 2016;125:959–66.

    Article  CAS  Google Scholar 

  32. Noyan H, Önal M, Sarıkaya Y. A model developed for acid dissolution thermodynamics of a Turkish bentonite. J Therm Anal Calorim. 2008;94:591–6.

    Article  CAS  Google Scholar 

  33. Sarıkaya Y, Önal M, Pekdemir AD. Application of diffusion and transition state theories on the carburizing of steel AISI 316 by annealing in uranium carbide powder. Heliyon. 2019;5(1–5):e02305.

    Article  Google Scholar 

  34. Sarıkaya Y, Önal M, Pekdemir AD. Kinetic and thermodynamic approaches on thermal degradation of sepiolite crystal using XRD- analysis. J Therm Anal Calorim. 2020;140:2667–72.

    Article  CAS  Google Scholar 

  35. Sarıkaya Y, Önal M, Pekdemir AD. Thermal degradation kinetics of sepiolite mineral. Clay Miner. 2020;55:96–100.

    Article  CAS  Google Scholar 

  36. Pekdemir AD, Sarıkaya Y, Önal M. Thermal transformation kinetics of a kaolinitic clay. J Therm Anal Calorim. 2016;123:767–72.

    Article  CAS  Google Scholar 

  37. Sarıkaya Y, Önal M. An indirect model for sintering thermodynamics. Turk J Chem. 2016;40:841–5.

    Article  CAS  Google Scholar 

  38. Wang B, Jia Y, Zhang T-T. Mineralogy and thermal analysis of natural pozzolana opal shale with nano-pores. J Wuhan Univ Technol Mater Sci Ed. 2017;32:532–7.

    Article  CAS  Google Scholar 

  39. Arasuna A, Okuno M, Okudera H, Mizukami T, Arai S, Katayama S, Koyano M, Ito N. Structural changes of synthetic opal by heat treatment. Phys Chem Miner. 2013;40:747–55.

    Article  CAS  Google Scholar 

  40. Chauviré B, Thomas PS. DSC of natural opal: insights into the incorporation of crystallisable water in the opal microstructure. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08949-4.

    Article  Google Scholar 

  41. McClellan AL, Hornsberger HF. Cross-sectional areas of molecules adsorbed on solid surfaces. J Coll Interf Sci. 1967;23:577–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ankara University Scientific Research Projects Coordination Unit (Project No: 19L0430007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müşerref Önal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıkaya, Y., Ceylan, H., Önal, M. et al. Thermal deactivation kinetics and thermodynamics of a silica gel using surface area data. J Therm Anal Calorim 146, 1505–1510 (2021). https://doi.org/10.1007/s10973-020-10132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10132-z

Keywords

Navigation