Skip to main content
Log in

Colloidal stability study of Fe3O4-based nanofluids in water and ethylene glycol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we report the synthesis of a new nanofluid (NF) based on magnetic nanoparticles (MNPS) synthesized by the coprecipitation method with high colloidal stability. The MNPS were functionalized with citric acid (Cac), and then, polyethylene glycol, 1000 (PEG1000), was bonded by polycondensation reactions with acid groups on the nanoparticles surface to increase the colloidal stability of the nanofluid. The MNPS were dispersed in an aqueous medium to obtain nanofluid-based magnetic nanoparticles in water (NF-MNPS-W) and in ethylene glycol to obtain nanofluid-based magnetic nanoparticles in ethylene glycol (NF-MNPS-E). The MNPS were characterized by X-ray diffraction and selected area electron diffraction, which confirmed the formation of the crystalline phase of Fe3O4. Transmission electron microscopy was used to confirm the size and morphology of the MNPS. The MNPS had an average diameter of 11.33 ± 3.68 nm. Infrared spectrum of the MNPS allowed the functionalization of the MNPS by Cac and then by PEG1000 to be proved. The colloidal stability of NF-MNPS-W (pH 8) and NF-MNPS-E was evaluated by measurement of Zeta potential (ζ) and dynamic light scattering (DLS) − 25 mV and 112 nm ± 1 nm, respectively. The DLS in the temperature function allowed the stability of the NF to be proved in working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cac:

Citric acid

Dh:

Hydrodynamic diameter

DLS:

Dynamic light scattering

DTEM :

Diameter size

FTIR:

Fourier transform infrared spectrum

IEP:

Isoelectric point

MNPS:

Magnetic nanoparticles

MNPS-Cac:

Magnetic nanoparticles surface modified with citric acid

MNPS-Cac-PEG1000:

Magnetic nanoparticles surface modified with citric acid and PEG1000

NF:

Nanofluid

NF-MNPS-E:

Nanofluid-based magnetic nanoparticles in ethylene glycol

NF-MNPS-W:

Nanofluid-based magnetic nanoparticles in water

NPS:

Nanoparticles

PDI:

Polydispersity index

PDIDLS :

Polydispersity index DLS

PDITEM :

Polydispersity index TEM

PEG1000:

Polyethylene glycol 1000

SAED:

Selected area electron diffraction

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

ζ:

Zeta potential

References

  1. Hajatzadeh A, Aghakhani S, Afrand M, Mahmoudi B. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    Article  CAS  Google Scholar 

  2. Mahbubul IM. Application of nanofluid 8.1. In: Preparation, characterization, properties, and application of nanofluid. 2019. https://doi.org/10.1016/b978-0-12-813245-6.00008-3.

  3. Wahab A, Hassan A, Arslan M, Babar H, Usman M. Solar energy systems—potential of nanofluids. J Mol Liq. 2019;289:111049.

    Article  CAS  Google Scholar 

  4. Kumar A, Subudhi S. Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Appl Therm Eng. 2019;160:114092.

    Article  CAS  Google Scholar 

  5. Al-rashed MH, Dzido G, Korpy M, Smo J, Wójcik J. Investigation on the CPU nanofluid cooling. Microelectron Reliab. 2016;63:159–65. https://doi.org/10.1016/j.microrel.2016.06.016.

    Article  CAS  Google Scholar 

  6. Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Convers Manag. 2018;172:438–56.

    Article  CAS  Google Scholar 

  7. Zhu K, Zhuo C, Yabo W, Hailong L, Xiaojing Z, Carsten F. Estimating the maximum energy-saving potential based on IT load and IT load shifting. Energy. 2017;138:902–9.

    Article  Google Scholar 

  8. Wang Y, Wang B, Zhu K, Li H, He W, Liu S, Zhu K. Energy saving potential of using heat pipes for CPU cooling. Appl Therm Eng. 2018;143:630–8. https://doi.org/10.1016/j.applthermaleng.2018.07.132.

    Article  Google Scholar 

  9. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    Article  CAS  Google Scholar 

  10. Krishna VM, Kumar MS. ScienceDirect Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment. Mater Today Proc. 2019;17:295–302.

    Article  CAS  Google Scholar 

  11. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659.

    Article  Google Scholar 

  12. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17:1980–1.

    Article  Google Scholar 

  13. Dolatabadi N, Rahmani R, Rahnejat H, Garner CP. Thermal conductivity and molecular heat transport of nanofluids. RSC Adv. 2019;9:2516–24. https://doi.org/10.1039/c8ra08987f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maji NC, Chakraborty J. Gram-scale green synthesis of copper nanowire powder for nanofluid applications. ACS Sustain Chem Eng. 2019;7:12376–88.

    CAS  Google Scholar 

  15. Zhu HT, Zhang CY, Tang YM, Wang JX. Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C. 2007;111:1646–50.

    Article  CAS  Google Scholar 

  16. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  17. Farhana K, Rahman MM, Ramasamy D, Noor MM, Najafi G, Samykano M, Mahamude ASF. Improvement in the performance of solar collectors with nanofluids—a state-of-the-art review. Nano-Struct Nano-Objects. 2019;18:100276.

    Article  CAS  Google Scholar 

  18. Sharshir SW, Mostafa ME, Essa FA, Kamal M, Ali A. Applications of nanofluids in solar energy: a review of recent advances. Renew Sustain Energy Rev. 2018;82:3483–502.

    Article  CAS  Google Scholar 

  19. Azwadi N, Sidik C, Noor M, Mohd W, Mamat R. Recent advancement of nanofluids in engine cooling system. Renew Sustain Energy Rev. 2017;75:137–44.

    Article  CAS  Google Scholar 

  20. Mahmoodi M, Kandelousi S. Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid. Propuls Power Res. 2016;5:279–86.

    Article  Google Scholar 

  21. Kumar A, Kumar A, Rai A. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod. 2016;127:1–18.

    Article  CAS  Google Scholar 

  22. Colangelo G, Favale E, Milanese M, De Risi A, Laforgia D. Cooling of electronic devices: nanofluids contribution. Appl Therm Eng. 2017;127:421–35.

    Article  CAS  Google Scholar 

  23. Subudhi S, Kumar A. Application of nanofluids for radiator cooling. Encycl Renew Sustain Mater. 2019. https://doi.org/10.1016/b978-0-12-803581-8.11463-8.

    Article  Google Scholar 

  24. Bozorg M, Fasano M, Cardellini A, Chiavazzo E, Asinari P. A review on the heat and mass transfer phenomena in nanofuid coolants with special focus on automotive applications. Renew Sustain Energy Rev. 2016;60:1615–33.

    Article  CAS  Google Scholar 

  25. Wu JM, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement-Research gap to engineering application. Prog Nucl Energy. 2013;66:13–24.

    Article  CAS  Google Scholar 

  26. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  27. Navarrete N, Gimeno-furió A, Forner-escrig J, Juliá JE, Mondragón R. Colloidal stability of molten salt -based nanofluids:dynamic light scattering tests at high temperature conditions. Powder Technol. 2019;352:1–10.

    Article  CAS  Google Scholar 

  28. Fan Y, Chen Y, Liang X, Xu J, Deng T. Dispersion stability of thermal nanofluids. Prog Natural Sci Mater Int. 2017;27:531–42.

    Article  CAS  Google Scholar 

  29. Briscoe WH. Current opinion in colloid, interface science depletion forces between particles immersed in nanofluids. Curr Opin Colloid Interface Sci. 2015;20:46–53.

    Article  CAS  Google Scholar 

  30. Pilkington GA, Briscoe WH. Nanofluids mediating surface forces. Adv Colloid Interface Sci. 2012;182:68–84.

    Article  CAS  Google Scholar 

  31. Sharma SK, Mital GS. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;76:202–12. https://doi.org/10.1016/j.expthermflusci.2016.06.029.

    Article  CAS  Google Scholar 

  32. dos Santos CC, Viali WR, Viali EdaSN, Assis DR, Amantea BE. Aqueous nanofluids based on copper MPA: synthesis and characterization. Mater Res. 2017;20:104–10.

    Article  Google Scholar 

  33. Abreu B, Lamas B. Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions. Heat Mass Transf. 2014. https://doi.org/10.1007/s00231-013-1226-8.

    Article  Google Scholar 

  34. Maskeen MM, Zeeshan A, Mehmood OU, Hassan M. Heat transfer enhancement in hydromagnetic alumina—copper/water hybrid nanofluid flow over a stretching cylinder. J Therm Anal Calorim. 2019;138(2):1127–36.

    Article  CAS  Google Scholar 

  35. Akbari A, Hassan M. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim. 2018;3:1835–47.

    Google Scholar 

  36. Azizi Z, Alamdari A, Doroodmand MM. Highly stable copper/carbon dot nanofluid. J Therm Anal Calorim. 2018;9:951–60.

    Article  CAS  Google Scholar 

  37. Zareei M, Yoozbashizadeh H, Reza H, Hosseini M. Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory. J Therm Anal Calorim. 2018;1:1185–96.

    Google Scholar 

  38. Khairul MA, Doroodchi E, Azizian R, Moghtaderi B. Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energ Convers Manage. 2017;149:660–74.

    Article  CAS  Google Scholar 

  39. Felicia L, Vinod S, Philip J. Recent advances in magnetorheology of critical review. J Nanofluids. 2016;5(1):1–47. https://doi.org/10.1166/jon.2016.1203.

    Article  Google Scholar 

  40. Hajiyan M, Ebadi S, Mahmud S, Biglarbegian M. Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4—glycerol International Centre for Diffraction Data. J Therm Anal Calorim. 2018;1:1451–64.

    Google Scholar 

  41. Pin Y, Shameli K, Miyake M, Khairudin NBBtA, Mohamad SEBt, Naiki T, Lee KX. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab J Chem. 2018. https://doi.org/10.1016/j.arabjc.2018.04.013.

    Article  Google Scholar 

  42. Brandt JV, Piazza RD, dos Santos CC, Chacón JV, Amantéa BE, Pinto GC, Magnani M, Piva HL, Tedesco AC, Primo FL, Júnior MJ, Marques RFC. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids Surf B Biointerfaces. 2019;177:228–34.

    Article  CAS  PubMed  Google Scholar 

  43. Amantea BE, Piazza RD, Chacon JRV, dos Santos CC, Costa TP, Rocha CO, Brandt JV, Godoi DRM, Júnior MJ, Marques RFC. Esterification influence in thermosensitive behavior of copolymers PNIPAm- co-PAA and PNVCL-co-PAA in magnetic nanoparticles surface. Colloids Surf A. 2019;575:18–26.

    Article  CAS  Google Scholar 

  44. De S, Mandal S. Physicochemical and engineering aspects surfactant-assisted shape control of copper nanostructures. Colloids Surf A. 2013;421:72–83.

    Article  CAS  Google Scholar 

  45. Beriache M, Sidik NAC, Yazid MNAWN, Mamat R, Najafi G, Kefayati GHR. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transf. 2016;78:60–7.

    Article  CAS  Google Scholar 

  46. Lu A, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte. 2007. https://doi.org/10.1002/anie.200602866.

    Article  Google Scholar 

  47. Okubo T, Particles E. Fundamentals of Colloid and Surface Chemistry. Colloidal Organization. 2015. https://doi.org/10.1016/b978-0-12-802163-7.00002-7.

  48. Bajpai P. Biermann’s handbook of pulp and paper: volume 2: paper and board making. Colloid Surf Chem. 2018;19(1):381–400. https://doi.org/10.1016/b978-0-12-814238-7.00019-2.

    Article  Google Scholar 

  49. Ohshima H. CHAPTER 1—Interaction of colloidal particles. In: Colloid and interface science in pharmaceutical research and development. Elsevier B.V.; 2014. https://doi.org/10.1016/b978-0-444-62614-1.00001-6.

  50. Viali WR, Nunes ES, dos Santos CC, Fermin SWS, Aragón H, Coaquira JAH, Morais PC, Júnior MJ. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media. J Nanoparticle Res. 2013. https://doi.org/10.1007/s11051-013-1824-x.

    Article  Google Scholar 

  51. Abdelbar MF, Fayed TA, Meaz TM, Ebeid E-ZM. Molecular and biomolecular spectroscopy photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes. SAA. 2016;168:1–11.

    CAS  Google Scholar 

  52. Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10:054107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B, applications in coordination, organometallic, and bioinorganic chemistry. 2009.

  54. Ferrer EG, Bichara LC, Gramajo B, Brand SA. Vibrational study and force field of the citric acid dimer based on the SQM methodology. Adv Phys Chem. 2011;11:347072-10.

    Google Scholar 

  55. Cuadro PD, et al. Reactive, functional polymers cross-linking of cellulose and poly (ethylene glycol) with citric acid. React Funct Polym. 2015;90:21–4.

    Article  CAS  Google Scholar 

  56. Castillo PM, Mata MDe, Casula MF, Sánchez-alcázar JA, Zaderenko AP. PEGylated versus non-PEGylated magnetic nanoparticles as Camptothecin delivery system. Beilstein J Nanotechnol. 2014;5:1312–9. https://doi.org/10.3762/bjnano.5.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tapadiya A, Vasanthan N. Crystallization and alkaline hydrolysis of poly (3-hydroxybutyrate) films probed by thermal analysis and infrared spectroscopy. Int J Biol Macromol. 2017;102:1130–7.

    Article  CAS  PubMed  Google Scholar 

  58. Alemdar A, Gungor N, Ece OI, Atici O. The rheological properties and characterization of bentonite dispersions in the presence of non-ionic polymer PEG. J Mater Sci. 2005;40:171–7.

    Article  CAS  Google Scholar 

  59. Hunter RJ. Foundations of colloid science. 2nd ed. Oxford University Press; 2001.

  60. Viali WR, Alcantara GB, Sartoratto PPC, Soler MAG, Mosiniewicz-Szablewska E, Andrzejewski B, Morais PC. Investigation of the molecular surface coating on the stability of insulating magnetic oils. J Phys Chem C. 2010;114(1):179–88.

    Article  CAS  Google Scholar 

  61. Singh AK. Structure, synthesis, and application of nanoparticles. Eng Nanoparticles. 2016. https://doi.org/10.1016/B978-0-12-801406-6.00002-9.

    Article  Google Scholar 

  62. Sun Z, Su F, Forsling W, Samskog P. Surface characteristics of magnetite in aqueous suspension. J Colloid Interface Sci. 1998;159:151–9.

    Article  Google Scholar 

  63. Aguilar K, Garvín A, Lara-sagahón AV, Ibarz A. Ascorbic acid degradation in aqueous solution during UV–Vis irradiation. Food Chem. 2019;297:124864.

    Article  CAS  PubMed  Google Scholar 

  64. dos Santos CC, Viali WR, Viali ESN, Júnior MJ. Aqueous nanofluids based on thioglycolic acid-coated copper sulfide nanoparticles for heat-exchange applications. J Mol Liq. 2020;313:0167-7322. https://doi.org/10.1016/j.molliq.2020.113391.

    Article  CAS  Google Scholar 

  65. Hunter RJ. Applications of the Zeta Potential-chapter 6. 1981. https://doi.org/10.1016/b978-0-12-361961-7.50010-9.

  66. Shaw DJ. Introduction to colloid and surface chemistry. 1992. https://doi.org/10.1016/C2009-0-24070-0..

Download references

Funding

Funding was provided by FAPESP (Grant No. project 2015/126385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio C. dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.C., Viali, W.R., Viali, E.S.N. et al. Colloidal stability study of Fe3O4-based nanofluids in water and ethylene glycol. J Therm Anal Calorim 146, 509–520 (2021). https://doi.org/10.1007/s10973-020-10062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10062-w

Keywords

Navigation