Skip to main content
Log in

Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study describes an investigation on the convective heat transfer performance of aqueous suspensions of multiwalled carbon nanotubes. The results suggested an increase on heat transfer coefficient of 47 % for 0.5 % volume fraction. Moreover, the enhancement observed during thermal conductivity assessment, cannot fully explain the heat transfer intensification. This could be associated to the random movements among the particles through a fluid, caused by the impact of the base fluid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee S, Choi SUS (1996) Application of metallic nanoparticle suspensions in advanced cooling systems. International mechanical engineering congress and exhibition

  2. Li Y, Je Zhou, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101

    Article  Google Scholar 

  3. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191. doi:10.1021/i160003a005

    Article  Google Scholar 

  4. Wasp EJ, Kenny JP, Gandhi RL (1979) Solid-liquid flow slurry pipeline transportation. In: Series on bulk materials handling, vol 1, no 4. Trans Tech Publications, Stafa-Zurich, Switzerland. ISBN 0878490167, 9780878490165

  5. Grimm A (1993) Powdered aluminum-containing heat transfer fluids. Patent DE 4131516 A1, German

  6. Choi S, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, San Francisco

    Google Scholar 

  7. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  8. Eastman JA, Choi US, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  9. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817

    Article  Google Scholar 

  10. Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199. doi:10.1016/j.ijheatmasstransfer.2008.06.032

    Article  MATH  Google Scholar 

  11. Choi SUS, Eastman JA (2001) Enhanced heat transfer using nanofluids. US Patent US 6221275 B1 University of Chicago

  12. Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. In: Materials Research Society, vol 457. Fall Meeting, Boston, USA. doi:10.1557/PROC-457-3

  13. Liu M-S, Lin MC-C, Tsai CY, Wang C-C (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033

    Article  Google Scholar 

  14. Liu M, Lin MC, Wang C (2011) Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 6:297. doi:10.1186/1556-276X-6-297

    Article  Google Scholar 

  15. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  16. Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523. doi:10.1016/j.rser.2005.01.010

    Article  Google Scholar 

  17. Lamas BC, Fonseca ML, Gonçalves FAMM, Ferreira AGM, Fonseca IMA, Kanagaraj S, Martins N, Oliveira MSA (2011) EG/CNTs nanofluids engineering and thermal characterization. J Nano Rese 13:69–74. doi:10.4028

    Article  Google Scholar 

  18. Ponmozhi J, Gonçalves FAMM, Ferreira AGM, Fonseca IMA, Kanagaraj S, Martins N, Oliveira MSA (2009) Thermodynamic and transport properties of CNT—water based nanofluids. J Nano Res 11:101–106

    Article  Google Scholar 

  19. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416:636–664. doi:10.1002/andp.19354160705

    Article  Google Scholar 

  20. Sarkar S, Selvam RP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102:074302–074307

    Article  Google Scholar 

  21. Lamas B, Abreu B, Fonseca A, Martins N, Oliveira M (2013) Numerical analysis of percolation formation in carbon nanotube based nanofluids. Int J Numer Methods Eng 95:257–270. doi:10.1002/nme.4510

    Article  Google Scholar 

  22. Sastry NNV, Abhijit B, Sundararajan T, Sarit Kumar D (2008) Predicting effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 19:055704. doi:10.1088/0957-4484/19/05/055704

    Article  Google Scholar 

  23. Lee J-H, Lee S-H, Choi C, Jang S, Choi S (2010) A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp 1:269–322. doi:10.1260/1759-3093.1.4.269

    Article  Google Scholar 

  24. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  25. Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95:6492–6494

    Article  Google Scholar 

  26. Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29:2477–2483. doi:10.1016/j.applthermaleng.2008.12.018

    Article  Google Scholar 

  27. Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28:17. doi:10.1016/j.applthermaleng.2008.01.005

    Article  Google Scholar 

  28. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2006) Fundamentals of heat and mass transfer, 6th edn. Wiley, London

    Google Scholar 

  29. Pak BC, Cho YI (1998) Hydrodynamic and heat tarnsfer study of dispersed fluids with submicron metallic oxide paticles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  30. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  Google Scholar 

  31. Zeinali Heris S, Etemad SG, Nasr Esfahany M (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transfer 33:529–535

    Article  Google Scholar 

  32. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210

    Article  Google Scholar 

  33. Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu—water nanofluid. Sci China Ser E-Technol Sci 45:408–416. doi:10.1360/02ye9047

    Google Scholar 

  34. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281. doi:10.1016/j.ijheatmasstransfer.2006.10.024

    Article  MATH  Google Scholar 

  35. Vakili M, Mohebbi A, Hashemipour H (2013) Experimental study on convective heat transfer of TiO2 nanofluids. Heat Mass Transf 49:1159–1165. doi:10.1007/s00231-013-1158-3

    Article  Google Scholar 

  36. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  37. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116

    Article  Google Scholar 

  38. Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27:569–580

    Article  Google Scholar 

  39. Choi SUS et al (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252

    Article  Google Scholar 

  40. Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  MATH  Google Scholar 

  41. Lamas B, Abreu B, Fonseca A, Martins N, Oliveira M (2012) Assessing colloidal stability of long term MWCNT based nanofluids. J Colloid Interface Sci 381:17–23. doi:10.1016/j.jcis.2012.05.014

    Article  Google Scholar 

  42. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  43. Meyyappan M (2004) Carbon nanotubes: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281

    Article  Google Scholar 

  45. Ponmozhi J, Gonçalves FAMM, Ferreira AGM, Fonseca IMA, Kanagaraj S, Martins N, Oliveira MSA (2010) Thermodynamic and transport properties of CNT—water based nanofluids. J Nano Res 11:101–106. doi:10.4028/www.scientific.net/JNanoR.11.101

    Article  Google Scholar 

  46. Shim J-W, Park S-J, Ryu S-K (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39:1635–1642. doi:10.1016/s0008-6223(00)00290-6

    Article  Google Scholar 

  47. Ingle JD, Crouch SR (1988) Spectrochemical analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  48. Russel WB, Saville DA, Showalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Gore MG (2000) Spectrophotometry and spectrofluorimetry, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  50. Ponmozhi J (2009) Water based nanofluids development and characterization. Master thesis, Department of Mechanical Engineering Univeristy of Aveiro, p 125

  51. Shah RK, Aung W (1987) Handbook of single-phase convective heat transfer. Wiley, New York

    Google Scholar 

  52. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia (FCT) and Fundo Social Europeu (FSE), for the financial support through the project Grant PTDC-EME-MFE-66482-2006 and PTDC-EME-MFE-119572-2010 (POPH-QREN program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Abreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, B., Lamas, B., Fonseca, A. et al. Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions. Heat Mass Transfer 50, 65–74 (2014). https://doi.org/10.1007/s00231-013-1226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1226-8

Keywords

Navigation