Skip to main content
Log in

Investigation on stability, density and viscosity of ZnO/PEG nanofluids in the presence of 1-butyl 3-methylimidazolium chloride and 1-butyl 3-methylimidazolium bromide ionic liquids

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Addition of ionic liquids (ILs) into the fluids containing nanoparticles is often used to minimize particle aggregation and improve dispersion behavior of nanofluids. However, they also affect the physical characteristics of liquids, such as thermophysical properties and viscosity. The aim of this work was to investigate the role of 1-butyl 3-methylimidazolium bromide [C4mim][Br] and 1-butyl 3-methylimidazolium chloride [C4mim][Cl] on the dispersion stability, volumetric characterizations and viscosity of polyethylene glycol 200 (PEG 200) nanofluids containing ZnO nanoparticles. Particle size distribution of these nanofluids has been studied by UV–Vis spectroscopy and dynamic light scattering (DLS). The obtained results show that the nanofluids with PEG 200 + [C4mim][Cl] have lower stability than PEG 200 + [C4mim][Br]. Additionally, in order to understand molecular interactions between components of studied nanofluids (ZnO, PEG 200 and ILs) the density (d), speed of sound (u) and viscosity (\(\eta\)) of these nanofluids were measured at 293.15, 298.15, 308.15 and 308.15 K. The excess molar volume (\(V_{m}^{E}\)), apparent molar volume (\(V_{\phi }\)) and isentropic compressibility (\(\kappa_{s}\)) have been calculated using density and speed of sound data. These properties can help us to discuss about the stability and volumetric characterizations of the nanofluids. Also, theoretical analyses of \(V_{m}^{E}\), \(\kappa_{s}\) and \(\eta\) were performed using some existing models (Ott et al., Redlich–Kister, Eyring-mNRF and Eyring-NRTL) and the obtained results were compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Torimoto, T. Tsuda, K. I. Okazaki, S. Kuwabata, Adv. Mater. 22, 1196 (2010).

    Article  CAS  Google Scholar 

  2. J.S. Wilkes, J. Mol. Catal. A Chem. 214, 11 (2004)

    Article  CAS  Google Scholar 

  3. W. Liu, L. Cheng, Y. Zhang, H. Wang, M. Yu, J. Mol. Liq. 140, 68 (2008)

    Article  CAS  Google Scholar 

  4. K.K. Laali, V.J. Gettwert, J. Org. Chem. 66, 35 (2001)

    Article  CAS  Google Scholar 

  5. B. Ilhan, M. Kurt, H. Ertürk, Exp. Therm. Fluid Sci. 77, 272 (2016)

    Article  CAS  Google Scholar 

  6. T. Krishnakumar, S. Viswanath, S. M. Varghese, Int. J. Refrig. 89, 122 (2018)

    Article  CAS  Google Scholar 

  7. W. Yu, H. Xie, J. Nanomater. 2012, 1 (2012)

    Google Scholar 

  8. P. Warrier, A. Teja, Nanoscale Res. Lett. 6, 247 (2011)

    Article  Google Scholar 

  9. A. Khan, H. M. Ali, R. Nazir, R. Ali, A. Munir, B. Ahmad, Z. Ahmad, J. Therm. Anal. Calorim. 138, 3007 (2019)

    Google Scholar 

  10. A. Afzal, S. A. Khan, C. A. Saleel, Mater. Res. Express, 6, 1150d8 (2019)

    Article  Google Scholar 

  11. M. Leena, S. Srinivasan, Mater. Lett. 219, 220 (2018)

    Article  CAS  Google Scholar 

  12. S. Basu, D. Inamdar, S. Mahamuni, A. Chakrabarti, C. Kamal, G. R. Kumar, S. Jha, D. Bhattacharyya, J. Phys. Chem. C. 118, 9154 (2014)

    Article  CAS  Google Scholar 

  13. M.S. Chavali, M.P. Nikolova, Appl. Sci. 1, 607 (2019)

    CAS  Google Scholar 

  14. N. Ali, J. A. Teixeira, A. Addali, J. Nanomater. 2018 (2018).

  15. A. Ghadimi, R. Saidur, H. Metselaar, Int. J. Heat Mass Transf. 54, 4051 (2011)

    Article  CAS  Google Scholar 

  16. C. N. de Castro, A. P. Ribeiro, S. I. Vieira, J. M. França, M. J. Lourenço, F. V. Santos, S. M. Murshed, P. Goodrich, C. Hardacre, Ionic Liquids-New Aspects for the Future, IntechOpen (2013).

  17. G. Huminic, A. Huminic, Renew. Sust. Energ. Rev. 16, 5625 (2012)

    Article  CAS  Google Scholar 

  18. D. Deb, S. Bhattacharya, J. Phys. Chem. C. 121, 6962 (2017)

    Article  CAS  Google Scholar 

  19. S. Zendehasbagh, R. Majdan-Cegincara, Phy. Chem. Res. 6, 45 (2018)

    CAS  Google Scholar 

  20. M.T. Zafarani-Moattar, R. Majdan-Cegincara, J. Chem. Thermodyn. 54, 55 (2012)

    Article  CAS  Google Scholar 

  21. M. T. Zafarani-Moattar, H. Shekaari, R. Munes-Rast, R. Majdan-Cegincara, Fluid Phase Equilib. 403, 136 (2015)

    Article  CAS  Google Scholar 

  22. H. Zhang, Q. Wu, J. Lin, J. Chen, Z. Xu, J. Appl. Phys. 108, 124304 (2010)

    Article  Google Scholar 

  23. S. Ponmani, R. Nagarajan, J. S. Sangwai, SPE J. 21, 405 (2016)

    Article  CAS  Google Scholar 

  24. W.E. Acree Jr., Thermochim. Acta 198, 71 (1992)

    Article  CAS  Google Scholar 

  25. O. Redlich, A. Kister, Ind. Eng. Chem. Res. 40, 345 (1948)

    Article  Google Scholar 

  26. J. Ott, C. Stouffer, G. Cornett, B. Woodfield, R. Wirthlin, J. Christensen, U. Deiters, J. Chem. Thermodyn. 18, 1 (1986)

    Article  CAS  Google Scholar 

  27. S. Glasstone. K. J. Laidler, H. Eyring, McGraw-Hill Book Company, New York (1941).

  28. S. Turner, A. Perez, A. Lopez, H. Craighead, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16, 3835 (1998).

  29. A. Zare, A. Hasaninejad, A. S. Beni, A. Moosavi-Zare, M. Merajoddin, E. Kamali, M. Akbari-Seddigh, Z. Parsaee, Sci. Iran. 18, 433 (2011)

    CAS  Google Scholar 

  30. M. Mokhtarpour, S. Homayoon-far, H. Shekaari, M. T. Zafarani-Moattar, J. Chem. Eng. Data (2020).

  31. V. Mutalik. L. S. Manjeshwar. M. Sairam, T. M. Aminabhavi, J. Chem. Thermodyn. 38, 1620 (2006)

    Article  CAS  Google Scholar 

  32. D. Cabaleiro, M. Pastoriza-Gallego, M. Piñeiro, L. Lugo, J. Chem. Thermodyn. 58, 405 (2013)

    Article  CAS  Google Scholar 

  33. M.J. Pastoriza-Gallego, C. Casanova, J. L. Legido, M. M. Piñeiro, Fluid Phase Equilib. 300, 188 (2011)

    Article  Google Scholar 

  34. D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernández, M. M. Piñeiro, L. Lugo, Nanoscale Res. Lett., 8, 286 (2013)

    Article  Google Scholar 

  35. K. Marsh, Section Optical Refraction. Blackwell Scientific Publications, Oxford, UK 500 (1987).

  36. V. Nair. A. Parekh, P. Tailor, Heat Mass Transfer, 55, 2769 (2019)

    Article  CAS  Google Scholar 

  37. J.-H. Qin. Z.-Q. Liu. N. Li. Y.-B. Chen, D.-Y. Wang, J. Nanopart. Res. 19 (2017) 1.

    Article  CAS  Google Scholar 

  38. M. Hosseini, S. Ghader, J. Mol. Liq. 153, 139 (2010)

    Article  CAS  Google Scholar 

  39. M.T. Zafarani-Moattar, R. Majdan-Cegincara, Ind. Eng. Chem. Res. 50, 8245 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to University of Tabriz Research Council and Iranian Nanotechnology Initiative Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homayoon-far, S., Mokhtarpour, M., Shekaari, H. et al. Investigation on stability, density and viscosity of ZnO/PEG nanofluids in the presence of 1-butyl 3-methylimidazolium chloride and 1-butyl 3-methylimidazolium bromide ionic liquids. J IRAN CHEM SOC 18, 1405–1418 (2021). https://doi.org/10.1007/s13738-020-02120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02120-9

Keywords

Navigation