Skip to main content
Log in

Effects of accelerated carbonation on properties of ceramic-based geopolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Geopolymers are considered as environmentally friendly binders with a high potential not only to lower the prices of binders, but mainly to decrease the significant carbon footprint originating from the production of traditionally used Portland cement. Their production is very different compared to Portland cement as they are usually prepared by activating alumino-silicates in an alkaline solution. Similarly, to concrete, pozzolana active materials, such as fly ash, blast-furnace slag, or metakaolin were successfully used for geopolymer production. Nevertheless, the utilization of fine ceramic waste powder, also pozzolana active, has rarely been reported in geopolymer production. In this paper, series of ceramic-based geopolymers were prepared with the utilization of ceramic waste powder, alkali activated by the mixtures of sodium hydroxide and sodium silicate (water glass) with the silicate moduli ranging from 0.8 to 1.4. The studied samples were cured for 7 days at temperatures of 60 °C to speed up geopolymerization of ceramics, and after 28 days, they were exposed to 20 ± 2% CO2 at 85% RH for 10 months. The effect of the accelerated carbonation conditions on the composition changes and thermal stability of the studied materials was determined by means of X-ray diffraction and thermal analysis. These results were supported by evolved gas analysis. Mechanical properties, such as compressive and flexural strength, were also analyzed. The accelerated carbonation conditions along with higher curing temperatures led to a partial enhancement of mechanical properties, reduction of efflorescence and non-negligible microstructural changes of exposed geopolymers compared to those stored in laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal Calorim. 1989;35(2):429–41. https://doi.org/10.1007/bf01904446.

    Article  CAS  Google Scholar 

  2. Davidovits J. Mineral polymers and methods of making them. Google Patents; US4349386A;1982.

  3. Brus J, Abbrent S, Kobera L, Urbanova M, Cuba P. Chapter Two - Advances in 27Al MAS NMR Studies of Geopolymers. In: Webb GA. Annual Reports on NMR Spectroscopy. Academic Press; 2016. p. 79–147.

  4. Liew Y-M, Heah C-Y, Mohd Mustafa AB, Kamarudin H. Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci. 2016;83:595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002.

    Article  CAS  Google Scholar 

  5. Temuujin J, Rickard W, Lee M, van Riessen A. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J Non-Cryst Solids. 2011;357(5):1399–404. https://doi.org/10.1016/j.jnoncrysol.2010.09.063.

    Article  CAS  Google Scholar 

  6. Živica V, Balkovic S, Drabik M. Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction. Constr Build Mater. 2011;25(5):2206–13. https://doi.org/10.1016/j.conbuildmat.2010.11.004.

    Article  Google Scholar 

  7. Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater. 2010;24(7):1176–83. https://doi.org/10.1016/j.conbuildmat.2009.12.023.

    Article  Google Scholar 

  8. Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res. 2007;37(12):1583–9. https://doi.org/10.1016/j.cemconres.2007.08.021.

    Article  CAS  Google Scholar 

  9. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel. 2011;90(6):2118–244. https://doi.org/10.1016/j.fuel.2011.01.018.

    Article  CAS  Google Scholar 

  10. Rattanasak U, Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng. 2009;22(12):1073–8. https://doi.org/10.1016/j.mineng.2009.03.022.

    Article  CAS  Google Scholar 

  11. Cheng TW, Chiu JP. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng. 2003;16(3):205–10. https://doi.org/10.1016/S0892-6875(03)00008-6.

    Article  CAS  Google Scholar 

  12. Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res. 2010;40(2):189–96. https://doi.org/10.1016/j.cemconres.2009.10.010.

    Article  CAS  Google Scholar 

  13. Kumar S, Kumar R, Mehrotra SP. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci. 2010;45(3):607–15. https://doi.org/10.1007/s10853-009-3934-5.

    Article  CAS  Google Scholar 

  14. Sabir B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Comp. 2001;23(6):441–54. https://doi.org/10.1016/S0958-9465(00)00092-5.

    Article  CAS  Google Scholar 

  15. Papadakis VG. Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash. Cem Concr Res. 1999;29(11):1727–36. https://doi.org/10.1016/S0008-8846(99)00153-2.

    Article  CAS  Google Scholar 

  16. Kumar S, Kumar R, Bandopadhyay A, Alex T, Kumar BR, Das SK, Mehrotra SP. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem Concr Comp. 2008;30(8):679–85. https://doi.org/10.1016/j.cemconcomp.2008.05.005.

    Article  CAS  Google Scholar 

  17. Reig L, Tashima MM, Borrachero MV, Monzó J, Cheeseman CR, Payá J. Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater. 2013;43:98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.

    Article  Google Scholar 

  18. Zaharaki D, Galetakis M, Komnitsas K. Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Constr Build Mater. 2016;121:686–93. https://doi.org/10.1016/j.conbuildmat.2016.06.051.

    Article  CAS  Google Scholar 

  19. Diaz EI, Allouche EN, Eklund S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel. 2010;89(5):992–6. https://doi.org/10.1016/j.fuel.2009.09.012.

    Article  CAS  Google Scholar 

  20. van Jaarsveld J, van Deventer J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers. J Ind Eng Chem. 1999;38(10):3932–41. https://doi.org/10.1021/ie980804b.

    Article  CAS  Google Scholar 

  21. Xu H, Van Deventer JSJ. Geopolymerisation of multiple minerals. Miner Eng. 2002;15(12):1131–9. https://doi.org/10.1016/S0892-6875(02)00255-8.

    Article  CAS  Google Scholar 

  22. Zhang B, MacKenzie KJD, Brown IWM. Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J Mater Sci. 2009;44(17):4668–766. https://doi.org/10.1007/s10853-009-3715-1.

    Article  CAS  Google Scholar 

  23. Shekhovtsova J, Zhernovsky I, Kovtun M, Kozhukhova N, Zhernovskaya I, Kearsley E. Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization. J Clean Prod. 2018;178:22–33. https://doi.org/10.1016/j.jclepro.2017.12.270.

    Article  CAS  Google Scholar 

  24. Keppert M, Vejmelková E, Bezdička P, Doleželová M, Čáchová M, Scheinherrová L, Pokorný J, Vyšvařil M, Rovnaníková P, Černý R. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Appl Clay Sci. 2018;161:82–9. https://doi.org/10.1016/j.clay.2018.04.019.

    Article  CAS  Google Scholar 

  25. Huseien GF, Sam ARM, Mirza J, Tahir MM, Asaad MA, Ismail M, Shah KW. Waste ceramic powder incorporated alkali activated mortars exposed to elevated temperatures: performance evaluation. Constr Build Mater. 2018;187:307–17. https://doi.org/10.1016/j.conbuildmat.2018.07.226.

    Article  CAS  Google Scholar 

  26. Fořt J, Vejmelková E, Koňáková D, Alblová N, Čáchová M, Keppert M, Rovnaníková P, Černý R. Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects. J Clean Prod. 2018;194:714–25. https://doi.org/10.1016/j.jclepro.2018.05.181.

    Article  CAS  Google Scholar 

  27. Sun Z, Cui H, An H, Tao D, Xu Y, Zhai J, Li Q. Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr Build Mater. 2013;49:281–7. https://doi.org/10.1016/j.conbuildmat.2013.08.063.

    Article  Google Scholar 

  28. Allahverdi A, Najafi KE. Construction wastes as raw materials for geopolymer binders. Int J Civ Eng. 2009;7(3):154–60.

    Google Scholar 

  29. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: A review of some recent developments. Constr Build Mater. 2015;85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.

    Article  Google Scholar 

  30. Kupwade-Patil K, Allouche EN. Impact of alkali silica reaction on fly ash-based geopolymer concrete. J Mater Civ Eng. 2012;25(1):131–9.

    Article  Google Scholar 

  31. Fernández-Jiménez A, Puertas F. The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res. 2002;32(7):1019–24. https://doi.org/10.1016/S0008-8846(01)00745-1.

    Article  Google Scholar 

  32. Temuujin J, Minjigmaa A, Lee M, Chen-Tan N, Van Riessen A. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cem Concr Comp. 2011;33(10):1086–91.

    Article  CAS  Google Scholar 

  33. Bernal SA. 12 - The resistance of alkali-activated cement-based binders to carbonation. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P, editors. Handbook of Alkali-Activated Cements, Mortars and Concretes. Oxford: Woodhead Publishing; 2015. p. 319–332.

    Chapter  Google Scholar 

  34. Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res. 2001;31(9):1277–83. https://doi.org/10.1016/S0008-8846(01)00574-9.

    Article  CAS  Google Scholar 

  35. Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JSJ, Provis JL. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res. 2014;57:33–43. https://doi.org/10.1016/j.cemconres.2013.12.003.

    Article  CAS  Google Scholar 

  36. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen AR, Duxson P, van Deventer JSJ. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. 2013;53:127–44. https://doi.org/10.1016/j.cemconres.2013.06.007.

    Article  CAS  Google Scholar 

  37. Palacios M, Puertas F. Effect of carbonation on alkali-activated slag paste. J Am Ceram Soc. 2006;89(10):3211–21. https://doi.org/10.1111/j.1551-2916.2006.01214.x.

    Article  CAS  Google Scholar 

  38. Bernal SA, Provis JL, De Gutiérrez RM, van Deventer JS. Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Mater Struct. 2015;48(3):653–69.

    Article  CAS  Google Scholar 

  39. Puertas F, Palacios M, Vázquez T. Carbonation process of alkali-activated slag mortars. J Mater Sci. 2006;41(10):3071–82. https://doi.org/10.1007/s10853-005-1821-2.

    Article  CAS  Google Scholar 

  40. Doebelin N, Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr. 2015;48(5):1573–80.

    Article  CAS  Google Scholar 

  41. ICSD database FIZ, Karlsruhe, Germany. Release 2017/2.

  42. Madsen IC, Scarlett NVI, Powder diffraction: theory and practice. Chapter 11: Quantitative phase analysis. 2008: Royal society of chemistry.

  43. Pavlíková M, Pavlík Z, Keppert M, Černý R. Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings’ walls. Constr Build Mater. 2011;25(3):1205–12. https://doi.org/10.1016/j.conbuildmat.2010.09.034.

    Article  Google Scholar 

  44. Cultrone G, Sebastián E, Elert K, De la Torre MJ, Cazalla O, Rodriguez-Navarro C. Influence of mineralogy and firing temperature on the porosity of bricks. J Eur Ceram Soc. 2004;24(3):547–64.

    Article  CAS  Google Scholar 

  45. Puertas F, Barba A, Gazulla M, Gómez M, Palacios M, Martínez-Ramírez S. Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland: caracterización y activación alcalina. 2006.

  46. Najafi Kani E, Allahverdi A, Provis JL. Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Comp. 2012;34(1):25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007.

    Article  CAS  Google Scholar 

  47. Temuujin J, van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater. 2009;167(1):82–8. https://doi.org/10.1016/j.jhazmat.2008.12.121.

    Article  CAS  PubMed  Google Scholar 

  48. Temuujin J, van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard Mater. 2009;164(2):634–9. https://doi.org/10.1016/j.jhazmat.2008.08.065.

    Article  CAS  PubMed  Google Scholar 

  49. Szklorzová H, Bílek V. Influence of alkali ions in the activator on the performance of alkali-activated mortars. in Proceedings of the 3rd International Symposium on Non-traditional Cement and Concrete, Brno, Czech Republic. 2008.

  50. Zhang Z, Provis JL, Reid A, Wang H. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cem Concr Res. 2014;64:30–41. https://doi.org/10.1016/j.cemconres.2014.06.004.

    Article  CAS  Google Scholar 

  51. Temuujin J, Ruescher C, Minjigmaa A, Darkhijav B, Davaabal B, Battsetseg BE. Characterization of effloresences of ambient and elevated temperature cured fly ash based geopolymer type concretes. in Adv Mater Res. 2016. Trans Tech Publ. doi.org/10.4028/www.scientific.net/AMR.1139.25.

  52. Zhang Z, Wang H, Provis JL, Reid A. Efflorescence: a critical challenge for geopolymer applications? in Concrete Institute of Australia's Biennial National Conference. 2013.

  53. Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovska L, Vinšová L. Aluminosilicate polymers–influence of elevated temperatures, efflorescence. Ceram-Silikáty. 2009;53(4):276–82.

    Google Scholar 

  54. Fořt J, Vejmelková E, Keppert M, Rovnaníková P, Bezdička P, Černý R. Alkaline activation of low-reactivity ceramics: peculiarities induced by the precursors' dual character. Cem Concr Comp. 2020;105:103440. https://doi.org/10.1016/j.cemconcomp.2019.103440.

    Article  CAS  Google Scholar 

  55. Kari OP, Puttonen J, Skantz E. Reactive transport modelling of long-term carbonation. Cem Concr Compos. 2014;52:42–53. https://doi.org/10.1016/j.cemconcomp.2014.05.003.

    Article  CAS  Google Scholar 

  56. Tchakouté HK, Rüscher CH, Kong S, Ranjbar N. Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J Build Eng. 2016;6:252–61. https://doi.org/10.1016/j.jobe.2016.04.007.

    Article  Google Scholar 

  57. Rosas-Casarez CA, Arredondo-Rea SP, Gómez-Soberón JM, Alamaral-Sánchez JL, Corral-Higuera R, Chinchillas-Chinchillas MdJ, Acuña-Agüero OH. Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. Int J Adv Comput Sci Appl. 2014;4(4):221–6.

  58. Pasupathy K, Berndt M, Castel A, Sanjayan J, Pathmanathan R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8years. Constr Build Mater. 2016;125:661–9. https://doi.org/10.1016/j.conbuildmat.2016.08.078.

    Article  CAS  Google Scholar 

  59. Jeon D, Jun Y, Jeong Y, Oh JE. Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cem Concr Res. 2015;67:215–25.

    Article  CAS  Google Scholar 

  60. ul Haq E, Kunjalukkal Padmanabhan S, Licciulli A. Synthesis and characteristics of fly ash and bottom ash based geopolymers–A comparative study. Ceram Int. 2014;40(2):2965–71. https://doi.org/10.1016/j.ceramint.2013.10.012.

  61. Goto S, Suenaga K, Kado T, Fukuhara M. Calcium silicate carbonation products. J Am Ceram Soc. 1995;78:2867–72. https://doi.org/10.1111/j.1151-2916.1995.tb09057.x.

    Article  CAS  Google Scholar 

  62. Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials. 2016: Crc Press Boca Raton. https://doi.org/10.1201/b19074.

  63. Gualtieri AF, Ferrari S. Kinetics of illite dehydroxylation. Phys Chemi Miner. 2006;33(7):490–501. https://doi.org/10.1007/s00269-006-0092-z.

    Article  CAS  Google Scholar 

  64. Guggenheim S, Chang Y-H, Koster van Groos AF. Muscovite dehydroxylation; high-temperature studies. Am Miner. 1987;72(5–6):537–50.

  65. Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin. Journal of Solid State Chem. 2011;184(10):2661–7. https://doi.org/10.1016/j.jssc.2011.07.038.

    Article  CAS  Google Scholar 

  66. Zhu H, Newton R, Kleppa O. Enthalpy of formation of wollastonite (CaSiO3) and anorthite (CaAl2Si2O8) by experimental phase equilibrium measurements and high-temperature solution colorimetry. Am Miner. 1994;79(1–2):134–44.

    CAS  Google Scholar 

  67. Toledo R, dos Santos DR, Faria RT, Carrió JG, Auler LT, Vargas H. Gas release during clay firing and evolution of ceramic properties. Appl Clay Sci. 2004;27(3):151–7. https://doi.org/10.1016/j.clay.2004.06.001.

    Article  CAS  Google Scholar 

  68. Part WK, Ramli M, Cheah CB. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater. 2015;77:370–95. https://doi.org/10.1016/j.conbuildmat.2014.12.065.

    Article  Google Scholar 

  69. Gavali HR, Bras A, Faria P, Ralegaonkar RV. Development of sustainable alkali-activated bricks using industrial wastes. Constr Build Mater. 2019;215:180–91. https://doi.org/10.1016/j.conbuildmat.2019.04.152.

    Article  CAS  Google Scholar 

  70. Zhang Z, Wong YC, Arulrajah A, Horpibulsuk S. A review of studies on bricks using alternative materials and approaches. Constr Build Mater. 2018;188:1101–18. https://doi.org/10.1016/j.conbuildmat.2018.08.152.

    Article  CAS  Google Scholar 

  71. Pouhet R, Cyr M. Carbonation in the pore solution of metakaolin-based geopolymer. Cem Concr Res. 2016;88:227–35. https://doi.org/10.1016/j.cemconres.2016.05.008.

    Article  CAS  Google Scholar 

  72. Lea FM. The chemistry of cement and concrete. 1940.

  73. Young J, Berger R, Breese J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2. J Am Ceram Soc. 1974;57(9):394–7. https://doi.org/10.1111/j.1151-2916.1974.tb11420.x.

    Article  CAS  Google Scholar 

  74. Allahverdi A, Najafi Kani E, Shaverdi B. carbonation versus efflorescence in alkali-activated blast-furnace slag in relation with chemical composition of activator. Int J Civ Eng. 2017;15(4):565–73. https://doi.org/10.1007/s40999-017-0225-4.

    Article  Google Scholar 

  75. Hakkinen T. The permeability of high strength blast furnace slag concrete. Nor Concr Res. 11;1992.

  76. Hakkinen T. The microstructure of high strength blast furnace slag concrete. Nor Concr Res. 11;1992.

  77. Görhan G, Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Comp Part B: Eng. 2014;58:371–7.

    Article  Google Scholar 

  78. Zhang Z, Wang H, Provis JL, Reid A. Efflorescence: a critical challenge for geopolymer applications? Concrete Institute of Australia's Biennial National Conference; 2013: Concr Inst Au.

  79. Škvára F, Kopecký L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater. 2009;168(2):711–20. https://doi.org/10.1016/j.jhazmat.2009.02.089.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Czech Science Foundation under Project No. 19-01982S and by Project No. SGS19/143/OHK1/3 T/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Scheinherrová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheinherrová, L., Vejmelková, E., Keppert, M. et al. Effects of accelerated carbonation on properties of ceramic-based geopolymers. J Therm Anal Calorim 145, 2951–2966 (2021). https://doi.org/10.1007/s10973-020-09980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09980-6

Keywords

Navigation