Skip to main content
Log in

Carbonation process of alkali-activated slag mortars

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study analyzes the behaviour of waterglass- or NaOH-activated slag mortars after carbonation. The effect of a superplasticizer based on vinyl copolymer and shrinkage reducing polypropylenglycol derivative admixtures on that process was also examined. The same tests were run on cement mortars for reference purposes. The mortars were carbonated in a chamber ensuring CO2 saturation for four and eight months, after which ages the samples were tested for mechanical strength; mercury porosimetry and mineralogical (XRD, FTIR) and microstructural characterization (SEM/EDX) were also conducted. The results obtained indicate that alkali-activated slag mortars were more intensely and deeply carbonated than Portland cement mortars. Carbonation took place directly on the gel, causing decalcification. When waterglass was the alkaline activator used, carbonation caused a loss of cohesion in the matrix and an important increase in porosity and decrease in mechanical strength. When a NaOH solution was used as the alkali activator, carbonation enhanced mortar compaction and increased mechanical strength. Finally, in waterglass-activated slag mortars, the inclusion of organic admixtures had no effect either on their behaviour after carbonation or the nature of the reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. GLUKHOVSKY, G. S. ROSTOVSKAJA and G. V. Y RUMYNA, in 7th International Congress Chemistry Cement (Paris) (1980) vol. 164–168, p. 3.

  2. P. V. KRIVENKO, in 9th International Congress Chemistry Cement (New Delhi) (1992) vol. 4, p. 481.

  3. S. D. WANG, K. L. SCRIVENER and P. L. PRATT, Cement and Concrete Res. 24(6) (1994) 1033.

    Article  CAS  Google Scholar 

  4. A. FERNÁNDEZ-JIMÉNEZ, F. PUERTAS and J. G. PALOMO, ibid. 29(3) (1999) 593.

    Google Scholar 

  5. S. D. WANG, X. C. PU, K. L. SCRIVENER and P. L. PRATT, Advances in Cement Res. 7(27) (1995) 93.

    CAS  Google Scholar 

  6. F. PUERTAS, Mater. Construcc. 45(239) 53.

  7. T. BAKHAREV, J. SANJAYAN and Y.-B. CHENG, Cement and Concrete Res. 29 (1999) 113.

    Article  CAS  Google Scholar 

  8. C. SHI, ibid. 26 (1996) 1789.

    Article  CAS  Google Scholar 

  9. T. BAKHAREV, J. G. SANJAYAN and Y.-B. CHENG, ibid. 32 (2002) 211.

    Article  CAS  Google Scholar 

  10. F. PUERTAS, R. DE GUTIERREZ, A. FERNÁNDEZ-JIMÉNEZ, S. DELVASTO and J. MALDONADO, Mater. Construcc. 52(267) (2002) 55.

    Article  CAS  Google Scholar 

  11. C. SHI, Advances in Cement Res. 15(2) (2003) 77.

    Article  CAS  Google Scholar 

  12. PU XINCHENG, YANG CHANGHUI and LIU FAN, Second International Conference Alkaline Cements and Concretes (1999) p. 717.

  13. T. BAKHAREV, J. G. SANJAYAN, and Y.-B. CHENG, Cem. and Con. Res. 33 (2003) 1607.

    Article  CAS  Google Scholar 

  14. F. PUERTAS, T. AMAT, A. FERNÁNDEZ-JIMÉNEZ, T. VÓZQUEZ, ibid. 33 (2003) 2031.

    Article  CAS  Google Scholar 

  15. XU BIN and PU XINCHENG, Second International Conference Alkaline Cements and Concretes (1999) p. 101.

  16. B. TAILING and J. BRANDSTETR, in Proc. 3rd Int. Conf. On Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Trondheim, (1989), 2, SP114-74, p. 1519.

  17. R. MEJÍA DE GUTIERREZ, J. MALDONADO, C. GUTIÉRREZ, Mater. Construcc. 54(276) (2004) p. 87.

    Article  Google Scholar 

  18. S. D. WANG. and K. SCRIVENER, Cem. Con. Res. 25(3) (1995) p. 561.

    Article  CAS  Google Scholar 

  19. J. I. ESCALANTE-GARCÍA, A. F. FUENTES, A. GOROKOVSKY, P. E. FRAIRE-LUNA and G. MENDOZA-SUAREZ, J. Am. Ceram. Soc. 86(12) (2003) 48.

    Google Scholar 

  20. A. FERNÁNDEZ-JIMÉNEZ, F. PUERTAS, I. SOBRADOS and J. SANZ, ibid. 86(8) (2003) 1389.

    Article  Google Scholar 

  21. N. R. SHORT, A. R. BROUGH, A. M. G. SENEVIRATNE, P. PURNELL and C. L. PAGE, J. Mater. Sci. 39 (2004) 5683.

    Article  CAS  Google Scholar 

  22. Y. F. HOUST and F. H. WITTMANN, Cem. Concr. Res. 32 (2002) 1923.

    Article  CAS  Google Scholar 

  23. K. BYFORS, et al. in Proc. 3rd Int. Conf. on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Trondheim (1989) SP114-70, vol. 2, p. 1547.

  24. X. C. PU, et al. “Sumary reports of Research on Alkali-Activated Slag Cement and Concrete” (Chongqing Institute of Architecture and Engineering, 1988), 6 vols (in Chinese).

  25. J. DEJA, Sil. Ind. 67(3–4) (2002) 37.

    CAS  Google Scholar 

  26. T. BAKAREV J. G. SANJAYAN and Y.-B. CHENG, Cem. Concr. Res. 31 (2001) 1277.

    Article  Google Scholar 

  27. E 104-02 ASTM, “Maintaining Constant Relative Humidity by Means of Aqueous Solutions”.

  28. UNE 112-011-94. Corrosión en armaduras. “Determinación de la profundidad de carbonatación en hormigones endurecidos y puestos en servicio.

  29. A. M. NEVILLE, “Properties of Concrete” Edited by Addison Wesley Longman, 4th edition (1995).

  30. C. SHI, et al. in Proc. 9th Int. Congr. On the Chemistry of Cement (New Delhi, 1992), vol. 3, p. 298.

  31. F. PUERTAS, A. FERNÁNDEZ-JIMÉNEZ, M. T. BLANCO-VARELA, Cem. Con. Res. 34 (2004) 139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Puertas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puertas, F., Palacios, M. & Vázquez, T. Carbonation process of alkali-activated slag mortars. J Mater Sci 41, 3071–3082 (2006). https://doi.org/10.1007/s10853-005-1821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1821-2

Keywords

Navigation