Skip to main content
Log in

Use of sinusoidal surface profile in the absorber tube of a parabolic trough solar collector to enhance its thermal performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the primary objective is to develop a sinusoidal wave profile at the inner surface of an absorber tube, study with different working fluids for its possible application in a parabolic trough solar collector. The thermo-hydraulic characteristics of the absorber tube with the sinusoidal profile are investigated for 4000 Reynolds number and accordingly the velocity of the working fluids, namely water and Therminol VP-1 are calculated. The absorber tube has a length of 2 m, with inner and outer diameters of 19 mm and 25 mm, respectively. The heat flux of 818.5 W m−2 is supplied at the bottom face, which is oriented towards the reflector of the parabolic trough solar collector. The RNG k-ɛ turbulence model is applied in the study, by considering the finite volume based software ANSYS FLUENT 18.0. The thermo-hydraulic characteristics of the absorber tube with sinusoidal wave profile are reported to enhanced performance to that of the other type of absorber tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig.9
Fig.10

Similar content being viewed by others

Abbreviations

C p :

Specific heat of the fluid (J kg1 K1)

D h :

Hydraulic diameter of the tube (mm)

f :

Friction factor

h :

Convective heat transfer coefficient (W m2 K1)

k :

Thermal conductivity of the fluid (W m1 K1)

L :

Length of the tube (mm)

Nu:

Nusselt number

\(\Delta p\) :

Pressure drop across the absorber tube (Pa)

Q :

Total heat supply (W m2)

ρ :

Density of the fluid (kg m3)

Re:

Reynolds number

\(\Delta T\) :

Temperature difference (K)

U :

Inlet velocity (ms1)

References

  1. Sukhatme S, Nayak J. Solar energy. 4th ed. Chennai: McGraw Hill Education Private Limited; 2008. p. 31–32.

    Google Scholar 

  2. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers—a review. Int J Therm Sci. 2015;90:150–72. https://doi.org/10.1016/j.ijthermalsci.2014.11.030.

    Article  Google Scholar 

  3. Mohanraj M, Gunasekar N, Velmurugan V. Comparison of energy performance of heat pumps using a photovoltaic–thermal evaporator with circular and triangular tube configurations. Build Simul. 2016;9:27–41. https://doi.org/10.1007/s12273-015-0256-1.

    Article  Google Scholar 

  4. Vishwakarma S, Debnath K, Debnath BK. Thermal performance study of helically grooved absorber tubes for parabolic trough solar collector. In: ASME 2018 Power and Energy Conference (PowerEnergy2018), Paper ID-Power 2018–7270 Period June 24–28, 2018, pp 1–9. https://doi.org/10.1115/POWER2018-7270

  5. Munoz J, Abanades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy. 2011;88:4139–49. https://doi.org/10.1016/j.apenergy.2011.04.026.

    Article  Google Scholar 

  6. Bellos E, Tzivanidis C, Antonopoulos K, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy. 2016;94:213–22. https://doi.org/10.1016/j.renene.2016.03.062.

    Article  CAS  Google Scholar 

  7. Hong M, Deng X, Huang K, Li Z. Compound heat transfer enhancement of a converging–diverging tube with evenly spaced twisted-tapes. Chem Energy. 2007;15:814–20. https://doi.org/10.1016/S1004-9541(08)60008-7.

    Article  CAS  Google Scholar 

  8. Akbarzadeh S, Valipour M. Heat transfer enhancement in parabolic trough collectors: a comprehensive review. Renew Sustain Energy Rev. 2018;92:198–21818. https://doi.org/10.1016/j.rser.2018.04.093.

    Article  CAS  Google Scholar 

  9. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205:540–61. https://doi.org/10.1016/j.apenergy.2017.07.141.

    Article  Google Scholar 

  10. Kalidasan B, Shanker R, Sninivas T. Absorber tube with internal hinged blades for solar parabolic trough collector. Energy Procedia. 2016;90:463–9. https://doi.org/10.1016/j.egypro.2016.11.213.

    Article  Google Scholar 

  11. Ghasemi S, Ranjbar A. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J Mol Study. 2016;222:159–66. https://doi.org/10.1016/j.molliq.2016.06.091.

    Article  CAS  Google Scholar 

  12. Kumaresan G, Sridhar R, Velraj R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy. 2012;47:395–402. https://doi.org/10.1016/j.energy.2012.09.036.

    Article  Google Scholar 

  13. Valizadeh M, Sarhaddi F, Adeli M. Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector. Renew Energy. 2019;138:1028–41. https://doi.org/10.1016/j.renene.2019.02.039.

    Article  Google Scholar 

  14. Rios B, Solorio C, Alejandro J. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renew Energy. 2018;122:665–73. https://doi.org/10.1016/j.renene.2018.01.094.

    Article  CAS  Google Scholar 

  15. Nagarajan P, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for solar collector applications: a review. Energy Procedia. 2014;61:2416–34. https://doi.org/10.1016/j.egypro.2014.12.017.

    Article  CAS  Google Scholar 

  16. Fernandez A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev. 2010;14:1695–721. https://doi.org/10.1016/j.rser.2010.03.012.

    Article  CAS  Google Scholar 

  17. Valan A, Sornakumar T. Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Sol Energy. 2007;81:1273–9. https://doi.org/10.1016/j.solener.2007.01.005.

    Article  CAS  Google Scholar 

  18. Liu P, Zheng N, Liu Z, Liu W. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Convers Manag. 2019;179:30–45. https://doi.org/10.1016/j.enconman.2018.10.057.

    Article  Google Scholar 

  19. Jamal M, Saedodin S, Aminy M. Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media. Renew Energy. 2017;107:156–63. https://doi.org/10.1016/j.renene.2017.02.004.

    Article  Google Scholar 

  20. Qu W, Wang R, Hong H, Sun J, Jin H. Test of a solar parabolic trough collector with rotatable axis tracking. Appl Energy. 2017;207:7–17. https://doi.org/10.1016/j.apenergy.2017.05.114.

    Article  Google Scholar 

  21. Raj A, Kunal G, Srinivas M, Jayaraj S. Performance analysis of a double-pass solar air heater system with asymmetric channel flow passages. J Therm Anal Calorim. 2019;136:21–38. https://doi.org/10.1007/s10973-018-7762-1.

    Article  CAS  Google Scholar 

  22. Dileep K, Arun K, Dishnu D, Srinivas M, Jayaraj S. Numerical studies on the effect of location and number of containers on the phase transition of PCM-integrated evacuated tube solar water heater. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09151-2.

    Article  Google Scholar 

  23. Raj A, Srinivas M, Jayaraj S. CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. Int J Therm Sci. 2019;139:88–104. https://doi.org/10.1016/j.ijthermalsci.2019.02.010.

    Article  Google Scholar 

  24. Hussain M. Estimation of global and diffuse irradiation from sunshine duration and atmospheric water vapour content. Sol Energy. 1984;33:217–20. https://doi.org/10.1016/0038-092X(84)90240-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biplab Kumar Debnath or Kishore Debnath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelkar, A.B., Debnath, B.K. & Debnath, K. Use of sinusoidal surface profile in the absorber tube of a parabolic trough solar collector to enhance its thermal performance. J Therm Anal Calorim 141, 2589–2597 (2020). https://doi.org/10.1007/s10973-020-09929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09929-9

Keywords

Navigation