Skip to main content

Numerical Study of Thermal Transport in a Flat-Plate Solar Collector Using Novel Absorber Plate

  • Conference paper
  • First Online:
Environmentally-Benign Energy Solutions

Abstract

In the light of introducing new techniques to develop the thermal performance of a solar collector, the development of design represents one of the efficient steps in this field. Using numerical analysis to analyze the flow of fluids and heat transfer refers to the most successful methods for comparison with the experimental findings. In this work, analysis of turbulent forced convection flow and heat transfer in a flat-plate solar water collector equipped with a novel absorber plate under constant heat flux boundary condition is numerically studied. Numerical solutions of the flow domain are implemented by resolving the two-dimensional governing equations of continuity, momentum and energy using finite volume method based on the SIMPLE algorithm technique. The influence of some important parameters such as roughness spacing, relative triangular width and Reynolds number on the local and average Nusselt number, velocity vector distribution and temperature contours has been presented and discussed in detail. Special prominence is given to the grid generation near the triangle sectioned. Results indicate that the heat transfer enhancement is achieved by specific selection of absorber geometry. The present results are determined and compared with the previous experimental data, and the results are very close to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(C_{p}\) :

Specific heat, \({\text{J}}/{\text{Kg}}\,{\text{K}}\)

\(D_{\text{h}}\) :

Hydraulic diameter, \({\text{m}}\)

\(H\) :

Channel height, \({\text{m}}\)

\(h\) :

Triangle height, \({\text{m}}\)

h conv. :

Convective heat transfer coefficient

\(\text{K}\) :

Fluid thermal conductivity \({\text{W}}/{\text{m}}\,{\text{K}}\)

\(k\) :

Turbulent kinetic energy, \({\text{m}}/{\text{s}}^{2}\)

\(L\) :

Channel length, \({\text{m}}\)

\(L_{h}\) :

Length of absorber plate under solar energy, \({\text{m}}\)

\({\text{Nu}}\) :

Nusselt number

p :

Pressure, \(N/m^{2}\)

\({ \Pr }\) :

Prandtl number

\({ \Pr }_{t}\) :

Turbulent Prandtl number

\(q^{\prime\prime}\) :

Solar heat flux, \({\text{W}}/{\text{m}}^{2}\)

\({\text{Re}}\) :

Reynolds number

s:

Roughness spacing, \({\text{m}}\)

T :

Temperature, \({\text{K}}\)

\(u\) :

Axial velocity, \({\text{m}}/{\text{s}}\)

\(v\) :

Transverse velocity, \({\text{m}}/{\text{s}}\)

w :

Relative triangular, \({\text{m}}\)

\(x\) :

Axial coordinate, \({\text{m}}\)

\(y\) :

Transverse coordinate, \({\text{m}}\)

\(\varepsilon\) :

Dissipation rate of turbulent kinetic energy, \({\text{m}}^{2} /{\text{s}}^{3}\)

\(\mu\) :

Dynamic viscosity, \({\text{Pa}}\,{\text{s}}\)

\(\mu_{t}\) :

Turbulent dynamic viscosity, \({\text{Pa}}\,{\text{s}}\)

\(\rho\) :

Density, \({\text{kg}}/{\text{m}}^{3}\)

\({\text{o}}\) :

Inlet conditions

e:

Outlet conditions

References

  1. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci

    Google Scholar 

  2. Pandey KM, Chaurasiya R (2017) A review on analysis and development of solar flat plate collector. Renew Sustain Energy Rev 67:641–650

    Article  Google Scholar 

  3. Zamzamian A et al (2014) An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 71:658–664

    Article  Google Scholar 

  4. Akhtar N, Mullick S (2012) Effect of absorption of solar radiation in glass-cover(s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. Int J Heat Mass Transf 55(1–3):125–132

    Article  Google Scholar 

  5. Vestlund J, Rönnelid M, Dalenbäck J-O (2009) Thermal performance of gas-filled flat plate solar collectors. Sol Energy 83(6):896–904

    Article  Google Scholar 

  6. Albojamal A et al (2017) Analysis of nanofluid transport through a wavy channel. Numer Heat Transfer, Part A: Appl 72(12):869–890

    Article  Google Scholar 

  7. Del Col D et al (2013) Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy 58

    Google Scholar 

  8. Hobbi A, Siddiqui K (2009) Experimental study on the effect of heat transfer enhancement devices in flat-plate solar collectors. Int J Heat Mass Transf 52(19–20):4650–4658

    Article  Google Scholar 

  9. Sandhu G, Siddiqui K, Garcia A (2014) Experimental study on the combined effects of inclination angle and insert devices on the performance of a flat-plate solar collector. Int J Heat Mass Transf 71:251–263

    Article  Google Scholar 

  10. Ahmed MA et al (2015) Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2—water nanofluid. Case Stud Therm Eng 6(C):77–92

    Google Scholar 

  11. Elshafei EAM et al (2010) Heat transfer and pressure drop in corrugated channels. Energy 35(1):101–110

    Article  MathSciNet  Google Scholar 

  12. Fabbri G (2000) Heat transfer optimization in corrugated wall channels. Int J Heat Mass Transf 43(23):4299–4310

    Article  Google Scholar 

  13. Wang CC, Chen CK (2002) Forced convection in a wavy-wall channel. Int J Heat Mass Transf 45(12):2587–2595

    Article  Google Scholar 

  14. Garcia RP, Oliveira SR, Scalon VL (2019) Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers (report). Sol Energy 182, 278 (2019)

    Google Scholar 

  15. Chen C-C, Huang P-C (2012) Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks. Int J Heat Mass Transf 55(23–24):6734–6756

    Article  Google Scholar 

  16. Kiliç F, Menlik T, Sözen A (2018) Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol Energy 164:101

    Article  Google Scholar 

  17. Hatami M, Jing D (2017) Optimization of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis. Appl Therm Eng 121:1040–1050

    Article  Google Scholar 

  18. Blazek J (2001) Computational fluid dynamics: principles and applications, 1st edn. Elsevier Science, Oxford [England]

    Google Scholar 

  19. Versteeg HK (2007) An introduction to computational fluid dynamics: the finite volume method, 2nd edn. In: Malalasekera W (ed) Pearson Education Ltd., Harlow, New York

    Google Scholar 

  20. Yadav AS, Bhagoria JL (2014) A numerical investigation of square sectioned transverse rib roughened solar air heater. Int J Therm Sci 79:111–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudhaifa Hamzah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamzah, H., Hasan, S.I., Küçüka, S. (2020). Numerical Study of Thermal Transport in a Flat-Plate Solar Collector Using Novel Absorber Plate. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-20637-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20637-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20636-9

  • Online ISBN: 978-3-030-20637-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics