Skip to main content

Computational Analysis of Internally Grooved Absorber Tubes of Parabolic Trough Solar Collector for Constant Mass Flow Rate of the Heat Transfer Fluid

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Abstract

This work represents the study of four different types of absorber tubes having helical grooves. The length of the tube is 2 m, with an external and internal diameter of 25 and 19 mm, respectively. The absorber tube is analysed considering constant mass flow rate of 0.0318 kg/s. 818.5 W/m2 of constant heat flux is supplied at the lower outer surface of the tube that is facing towards the parabolic trough reflector. ANSYS FLUENT 18.0 is used for simulation which is based on finite volume method. Simulation is performed using a turbulence model of standard k-ɛ RNG type. Thermo hydraulic performances for trapezoidal, rectangular, semicircular, and triangular grooves are calculated as 0.64, 1.47, 1.56, and 2.10, respectively. Therefore, the absorber tube with triangular groove showed better thermal performance compared to others. As well as the drop of pressure for the same tube is also lowest among the other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( C_{P} \) :

Specific heat of the HTF (kJ/kg K)

\( D_{I} \) :

Hydraulic diameter of the tube (m)

f :

Friction factor

h :

Convective heat transfer coefficient (W/m2K)

k :

Thermal conductivity of the HTF (W/mK)

L :

Length of the tube (m)

\( \dot{m} \) :

Mass flow rate of the HTF (kg/s)

\( Nu \) :

Nusselt number

Q :

Total heat given to the surface of tube (W)

U :

Inlet velocity of the HTF (m/s)

\( \nabla P \) :

Pressure drop in the tube (Pa)

\( \nabla t \) :

Temperature difference (K)

\( \rho \) :

Density of the HTF (kg/m3)

\( \mu \) :

Dynamic viscosity (Ns/m2)

References

  1. Ghasemi, S.E., Ranjbar, A.A.: Appl. Therm. Eng. 118, 807–816 (2017)

    Article  Google Scholar 

  2. Munoz, J., Abanades, A.: Appl. Energy 88, 4139–4149 (2011)

    Article  Google Scholar 

  3. Huang, Z., Yu, G.L., Li, Z.Y., Tao, W.Q.: Energy Procedia 69, 1306–1316 (2014)

    Article  Google Scholar 

  4. Xiangtao, G., Fuqiang, W., Haiyan, W., Jianyu, T., Qingzhi, L., Huaizhi, H.: Sol. Energy 144, 185–202 (2017)

    Article  Google Scholar 

  5. Jamal-Abad, M.T., Saedodin, S., Aminy, M.: Renew. Energy 107, 156–163 (2017)

    Article  Google Scholar 

  6. Kalidasan, B., Shankar, R., Srinivas, T.: Energy Procedia 90, 463–469 (2016)

    Article  Google Scholar 

  7. Qiu, Y., Li, M., He, Y.L., Tao, T.W.: Appl. Therm. Eng. 115, 1255–1265 (2017)

    Article  Google Scholar 

  8. Xie, W.T., Dai, Y.J., Wang, R.Z.: Sol. Energy 91, 242–255 (2013)

    Article  Google Scholar 

  9. Mwesigye, A., Huan, Z., Meyer, J.P.: Energy Convers. Manage. 120, 449–465 (2016)

    Article  Google Scholar 

  10. Zheng, Z.J., Li, M.J., He, Y.L.: Appl. Energy 185, 1152–1161 (2017)

    Article  Google Scholar 

  11. Bellos, E., Tzivanidis, C., Antonopoulos, K.A.: Appl. Energy 114, 374–386 (2017)

    Article  Google Scholar 

  12. Hussain, M.: Sol. Energy 33, 217–220 (1984)

    Article  Google Scholar 

  13. Kumar, K.R., Reddy, K.S.: Appl. Energy 86, 1804–1812 (2009)

    Article  Google Scholar 

  14. Bellos, E., Tzivanidis, C., Tsimpoukis, D.: Appl. Energy 205, 540–561 (2017)

    Article  Google Scholar 

  15. Zhu, X.W., Fu, Y.H., Zhao, J.Q.: Energy Convers. Manage. 127, 140–148 (2016)

    Article  Google Scholar 

  16. Reddy, K.S., Kumar, K.R., Satyanarayana, G.V.: Heat Transfer Engg. 29, 961–972 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Vishwakarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vishwakarma, S., Meher, P.K., Debnath, B.K., Debnath, K. (2020). Computational Analysis of Internally Grooved Absorber Tubes of Parabolic Trough Solar Collector for Constant Mass Flow Rate of the Heat Transfer Fluid. In: Biswal, B., Sarkar, B., Mahanta, P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0124-1_112

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0124-1_112

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0123-4

  • Online ISBN: 978-981-15-0124-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics