Skip to main content
Log in

Study on heat transfer and fluidity of three-dimensional invisible finned-tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three-dimensional invisible finned-tube is a kind of high-efficiency enhanced tube which is widely used at present. In order to study and analyze advantages and disadvantages of heat transfer and flow performance of the three-dimensional invisible finned-tube, other enhanced tube heat exchangers are introduced and compared through experiments. After analysis and research, it is found that the total heat transfer coefficient K is not the only indexes for evaluating the performance of the heat exchanger, and the resistance is also one of the indexes. According to the evaluation standard of the comprehensive performance of the heat exchanger, the comprehensive performance factor η of the tube side and shell side of the three-dimensional invisible finned-tube heat exchanger is better than that of the other enhanced tube heat exchanger, and the enhanced tube standard is reached under certain conditions, which shows that the three-dimensional invisible finned-tube heat exchanger has excellent performance. The analysis results in this paper have certain guiding significance for engineering design and application of three-dimensional invisible finned-tube heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

P :

Pitch of heat exchange element (mm)

A :

Long axis of the three-dimensional tube (mm)

B :

Short axis of the three-dimensional tube (mm)

h :

Arc line tube groove width (mm)

d :

Diameter of the heat exchange element (mm)

L :

Length of heat exchange element (mm)

D :

Shell diameter of heat exchanger (mm)

m :

Number of heat exchange tubes (piece)

K :

Total heat transfer coefficient (W m−2 K−1)

Q :

Heat exchange power (W)

Nu:

Nusselt number of the heat exchanger (–)

Re:

Reynolds number of the heat exchanger (–)

ΔP :

Resistance loss of the heat exchanger (Pa)

f :

Resistance coefficient of the heat exchanger (–)

C :

Correction constant of convective heat transfer coefficient

Pr:

Prandtl number (–)

de:

Equivalent diameter of heat exchange element (m)

c p :

Specific heat of working fluid at constant pressure (J kg−1 K−1)

t :

Cold side temperature (K)

T :

Hot side temperature (K)

ΔT m :

Average temperature difference (K)

ΔT 1 :

Large temperature difference between hot and cold (K)

ΔT 2 :

Small temperature difference between hot and cold (K)

F :

Heat exchanger area (m2)

V :

Volume flow of working fluid (m3 s−1)

B :

Thermal resistance of tube wall (m2 K W−1)

le:

Equivalent length (m)

v :

Working fluid velocity (m s−1)

S:

Cross section of working fluid flow (m2)

f s :

Resistance coefficient of smooth tube (–)

f′ :

Resistance coefficient of enhanced element (–)

Nus :

Nusselt number of smooth tube (–)

Nu :

Nusselt number of enhanced element (–)

1:

Inlet

2:

Outlet

o:

Shell side of heat exchanger

i:

Tube side of heat exchanger

ALT:

Arc line tube

CDT:

Converging–diverging tube

3D:

Three-dimensional invisible finned-tube

ST:

Smooth tube

δ :

Heat exchange element thickness (mm)

η :

Comprehensive performance evaluation factor

α :

Convective heat transfer coefficient (W m−2 K−1)

λ :

Thermal conductivity of working fluid (W m−1 K−1)

ρ :

Density of working fluid (kg m−3)

References

  1. Fa Jiang H, Wei Wu C, Ping Y. Experimental investigation of heat transfer and flowing resistance for air flow cross over spiral finned tube heat exchanger. Energy Procedia. 2012;17:741–9. https://doi.org/10.1016/j.egypro.2012.02.166.

    Article  CAS  Google Scholar 

  2. Adam AY, Oumer AN, Najafi G, Ishak M, Firdaus M, Aklilu TB. State of the art on fow and heat transfer performance of compact fn–and–tube heat exchangers. J Therm Anal Calorim. 2020;139:2739–68. https://doi.org/10.1007/s10973-019-08971-6.

    Article  CAS  Google Scholar 

  3. Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: a review. Int J Heat Mass Transf. 2014;79:417–31. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.072.

    Article  CAS  Google Scholar 

  4. Gomaa A, Aly WA, Elsaid AM, Eid EI. Thermal performance of the chilled water spirally coiled finned tube in cross flow for air conditioning applications. Int J Refrig. 2010;33:313–20. https://doi.org/10.1016/j.asej.2011.10.005.

    Article  Google Scholar 

  5. Chumpia A, Hooman K. Performance of tubular aluminum foam heat exchangers in multiple row bundles. J Therm Anal Calorim. 2019;135:1813–22. https://doi.org/10.1007/s10973-018-7348-y.

    Article  CAS  Google Scholar 

  6. Tang S-Z, Wang F-L, He Y-L, Yang Yu, Tong Z-X. Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm. Appl Energy. 2019;239:908–18. https://doi.org/10.1016/j.apenergy.2019.01.122.

    Article  Google Scholar 

  7. Han T, Wang C, Cao Q, Chen W, Che D. Investigation on heat transfer characteristics of the H-type finned tube in flue gas with high content of ash. Energy Procedia. 2017;105:4680–4. https://doi.org/10.1016/j.egypro.2017.03.1014.

    Article  CAS  Google Scholar 

  8. Li X, Zhu D, Sun J, Mo X, Yin Y. Air side heat transfer and pressure drop of H type fin and tube bundles with in line layouts. Exp Therm Fluid Sci. 2018;96:145–53. https://doi.org/10.1016/j.expthermflusci.2018.02.029.

    Article  Google Scholar 

  9. Wang H, Liu Y-w, Yang P, Ren-jie W, He Y-l. Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method. Appl Therm Eng. 2016;105:5098–105. https://doi.org/10.1016/j.applthermaleng.2016.03.033.

    Article  Google Scholar 

  10. Wang F-L, He Y-L, Tang S-Z, Tong Z-X. Parameter study on the fouling characteristics of the H-type finned tube heat exchangers. Int J Heat Mass Transf. 2017;81:137–41. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.107.

    Article  Google Scholar 

  11. Lagrandeur J, Croquer S, Poncet S, Sorin M. Exergy analysis of the flow process and exergetic optimization of counterflow vortex tubes working with air. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119527.

    Article  Google Scholar 

  12. Dagdevir T, Keklikcioglu O, Ozceyhan V. Heat transfer performance and flow characteristic in enhanced tube with the trapezoidal dimples. Int Commun Heat Mass Transf. 2019. https://doi.org/10.1016/j.icheatmasstransfer.2019.104299.

    Article  Google Scholar 

  13. Deymi-Dashtebayaz M, Akhoundi M, Ebrahimi-Moghadam A, et al. Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09398-0.

    Article  Google Scholar 

  14. Chen J, Müller-Steinhagen H, Duffy GG. Heat transfer enhancement in dimpled tubes. Appl Therm Eng. 2001;21(5):535–47. https://doi.org/10.1016/S1359-4311(00)00067-3.

    Article  CAS  Google Scholar 

  15. Vicente PG, Garcı́a A, Viedma A. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int J Heat Mass Transf. 2002;45(3):543–53. https://doi.org/10.1016/S0017-9310(01)00170-3.

    Article  CAS  Google Scholar 

  16. Xia H, Zhou YL, Wang GQ, Wu QQ, Tang JW. Experimental study of boiling heat transfer in vortex tubes and dimple tubes. J Chongqing Univ. 2019;42(9):10–8. https://doi.org/10.11835/j.issn.1000-582X.2019.09.002.

    Article  Google Scholar 

  17. Milani Shirvan K, Mamourian M, Abolfazli Esfahani J. Experimental study on thermal analysis of a novel shell and tube heat exchanger with corrugated tubes. J Therm Anal Calorim. 2019;138(2):1583–606. https://doi.org/10.1007/s10973-019-08308-3.

    Article  CAS  Google Scholar 

  18. Wen XQ, Miao MQ, Sun LF. Study on fouling characteristics of arc line tube based on principal component analysis and PLS algorithm. Control Instrum Chem Ind. 2015;42(06):656–60. https://doi.org/10.3969/j.issn.1000-3932.2015.06.019.

    Article  Google Scholar 

  19. Wang X, Chen HF, Xie XH, Zhang J. Numerical simulation and field synergy analysis of connective heat transfer characteristics inside the equal-pitch converging-diverging tube. J Eng Therm Energy Power. 2020. https://doi.org/10.16146/j.cnki.rndlgc.2020.03.022.

    Article  Google Scholar 

  20. Hamedani FA, Ajarostaghi SSM, Hosseini SA. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08765-w.

    Article  Google Scholar 

  21. Taymaz I, Koc I, Islamoğlu Y. Experimental study on forced convection heat transfer characteristics in a converging diverging heat exchanger channel. Heat Mass Transf. 2008;44(10):1257–62. https://doi.org/10.1007/s00231-007-0366-0.

    Article  Google Scholar 

  22. Gao XN, Zou HC, Wang DY, Lu YS. Heat transfer and flow resistance properties in twisted oblate tube with large twist. J South China Univ Technol. 2008;36(11):17–21. https://doi.org/10.3321/j.issn:1000-565X.2008.11.004.

    Article  Google Scholar 

  23. Zhang XX, Wei GH, Sang ZF. Experimental research of heat transfer and flow friction properties in twisted tube heat exchanger. Chem Eng. 2007;35(2):17–20. https://doi.org/10.3969/j.issn.1005-9954.2007.02.005.

    Article  Google Scholar 

  24. Zhu DS, Shi ZY, Qian TL, Tan XH, Xiao JM. Numerical simulation and field synergy analysis of twisted oval tube heat exchanger. J Chem Eng Chin Univ. 2015;29(1):64–71. https://doi.org/10.3969/j.issn.1003-9015.2015.01.009.

    Article  CAS  Google Scholar 

  25. Alempour SM, Abbasian Arani AA, Najafizadeh MM. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section. J Therm Anal Calorim. 2020;140:1237–57. https://doi.org/10.1007/s10973-020-09337-z.

    Article  CAS  Google Scholar 

  26. Indurain B, Uystepruyst D, Beaubert F, et al. Numerical investigation of several twisted tubes with non-conventional tube cross sections on heat transfer and pressure drop. J Therm Anal Calorim. 2020;140:1555–68. https://doi.org/10.1007/s10973-019-08965-4.

    Article  CAS  Google Scholar 

  27. Omidi M, Rabienataj Darzi AA, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137:1451–62. https://doi.org/10.1007/s10973-019-08026-w.

    Article  CAS  Google Scholar 

  28. Huang DB, Deng XH, Wang YJ, Huang SY. The experiment research of heat exchanger of spiral elliptical flat tube. Petro-chem Equip. 2003;32(03):1–4. https://doi.org/10.3969/j.issn.1000-7466.2003.03.001.

    Article  CAS  Google Scholar 

  29. Fu PJ. Application of twisted tube heat exchanger. Rolling Steel. 1994;1(04):63–4. https://doi.org/10.13228/j.boyuan.issn1003-9996.1994.04.027.

    Article  Google Scholar 

  30. Tan XH, Zhu DS, Zhang LZ, Zeng LD, Cheng QL. Research progress of twisted oval tube heat exchanger and its application. Chem Eng. 2012;40(10):29–34. https://doi.org/10.3969/j.issn.1005-9954.2012.10.008.

    Article  Google Scholar 

  31. Mo X, Zhu DS, Zhang JN. Practical research on twisted elliptical tube in falling film evaporator of MVR system. Chem Eng. 2016;44(09):24–8. https://doi.org/10.3969/j.issn.1005-9954.2016.09.005.

    Article  Google Scholar 

  32. Mo X, Zhu DS, Lin CD. Experimental and numerical on heat transfer characteristics of three-dimensional flue gas heat exchanger. Chin J Process Eng. 2018;18(01):41–8. https://doi.org/10.12034/j.issn.1009-606X.217198.

    Article  CAS  Google Scholar 

  33. Luo ZX. The comparative study and numerical simulation of shell-and-tube heat exchangers. Wuhan: Huazhong University of Science & Technology; 2008. p. 20–41. https://doi.org/10.7666/d.d063658.

    Book  Google Scholar 

  34. Shao TC. The experimental investigation of the heat transfer and fouling characteristics on several enhanced tubes. Jilin City: Northeast Electric Power University; 2007. p. 19–27. https://doi.org/10.7666/d.Y1044039.

    Book  Google Scholar 

  35. Gee DL, Webb RL. Forced convection heat transfer in helically rib-roughened tubes. Int J Heat Mass Transf. 1980;23:1127–36. https://doi.org/10.1016/0017-9310(80)90177-5.

    Article  Google Scholar 

  36. Wilson EE. A basis for rational design of heat transfer apparatus. Trans ASME. 1915;37:546–668. https://doi.org/10.1016/j.icheatmasstransfer.1915.105297.

    Article  Google Scholar 

  37. McAdams W H. Heat transmission. Book reviews: heat transmission, science. 1954; 120. https://dx.doi.org/10.1126/science.120.3128.984.

  38. Yang S, Tao W. Heat transfer. 4th ed. Beijing: Higher Education Press; 2006. p. 237–9.

    Google Scholar 

  39. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Heat Mass Transf. 1985;12:3–22. https://doi.org/10.1016/0735-1933(85)90003-X.

    Article  Google Scholar 

  40. Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011. http://dx.doi.org/US5328671A.

  41. You Y, Fan A, Lai X, Huang S, Liu W. Experimental and numerical investigations of shell-side thermo-hydraulic performancesfor shell-and-tube heat exchanger with trefoil-hole baffles. Appl Therm Eng. 2013;50:950–6. https://doi.org/10.1016/j.applthermaleng.2012.08.034.

    Article  Google Scholar 

  42. Kim IH, No HC. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium–water test loop and numerical simulations. Appl Therm Eng. 2011;31(17–18):4064–73. https://doi.org/10.1016/j.applthermaleng.2011.08.012.

    Article  CAS  Google Scholar 

  43. Chen M, Sun X, Christensen RN, Skavdahl I, Sabharwall P. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger. Appl Therm Eng. 2016;108:1409–17. https://doi.org/10.1016/j.applthermaleng.2016.07.149.

    Article  CAS  Google Scholar 

  44. Moffat RJ. Using uncertainty analysis in the planning of an experiment. J Fluids Eng. 1985;107(2):173–8. https://doi.org/10.1115/1.3242452.

    Article  CAS  Google Scholar 

  45. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiment. ASME Mech Eng. 1953;75:3–8. https://doi.org/10.1016/0894-1777(88)90043-x.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by “Industrial Technology Major Program for Tackling Key Problems of Science and Technology Planning Projects of Guangzhou (Grant No. 201802010022)” and “Special Project of Scientific and Technological Cooperation of Chinese Academy of Sciences and Hubei Province (Grant No. 2018-916-000-009) and Opening Foundation of Key Laboratory of Renewable Energy, Chinese Academy of Sciences” and “Natural Science Foundation of Guangdong Province, No.2020A1515011318.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Mo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, X., Zhu, D.S., Wang, F.Y. et al. Study on heat transfer and fluidity of three-dimensional invisible finned-tube. J Therm Anal Calorim 146, 449–460 (2021). https://doi.org/10.1007/s10973-020-09905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09905-3

Keywords

Navigation