Skip to main content
Log in

State of the art on flow and heat transfer performance of compact fin-and-tube heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The need for better thermal–hydraulic performance of heat exchangers remains the primary reason for further improving the design of heat exchanger. Various investigations have been carried out on the design and performance of fin-and-tube heat exchangers (HEs). Different HE designs were made available that can enhance the heat transfer and reduce the pressure drop. Recently, existing heat exchangers are either have been improved or replaced by newly emerged heat exchangers with better thermal–hydraulic performance. In this review, fin-and-tube HEs’ thermal–hydraulic performance investigation methods and their detailed flow and heat transfer analyses results are summarized. This review also critically surveyed the major heat transfer enhancers and their configuration, geometry and material type effects on thermal–hydraulic performance. Furthermore, a summary of both the theoretical and experimental studies on HEs’ performance is made. Also, the effects of tubes dimension, arrangement and number rows on HEs’ performance have been discussed. Furthermore, different ways to optimize the geometrical and process parameters of the fin-and-tube HEs were studied, considering the heat transfer enhancement, pumping power, size of the heat exchanger, and other economic factors. Finally, future studies and perspective in the field of fin-and-tube HEs are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

D :

Tube diameter (mm)

\({\text{D}}_{\text{h}}\) :

Hydraulic diameter of the tube (m)

f :

Friction factor

\(F_{\text{p}}\) :

Fin pitch (mm)

\(F_{\text{h}}\) :

Fin height (mm)

h :

Convection heat transfer coefficient

J :

Heat transfer factor

k :

Thermal conductivity of the tube (W/m k)

L :

Length of the tube (m)

N :

Number of tube rows

\(P_{\text{l}}\) :

Longitudinal tube pitch

\(t_{\text{p}}\) :

Fin height (mm)

\(u_{ \hbox{max} }\) :

Maximum velocity of the fluid (m/s)

U :

Overall heat transfer coefficient

V :

Air velocity (m/s)

Nu:

Nusselt number

Re:

Reynolds number

\(\rho\) :

Density of the fluid (kg/m3)

\(\Delta P\) :

Pressure drop (Pa)

θ :

Attack angle

e :

Elliptical eccentricity

δ :

Fin thickness (mm)

\(\alpha_{\text{VG}}\) :

Angle of attack of the vortex generators

CHEs:

Compact heat exchangers

CRVGs:

Curved rectangular vortex generators

CDWVGs:

Curved delta-winglet vortex generators

DO:

Direct optimization

DWLVGs:

Delta-winglet longitudinal vortex generators

DWRVGs:

Delta-winglet rectangular vortex generators

DWVGs:

Delta-winglet vortex generators

Exp:

Experimental

HEs:

Heat exchangers

IR:

Infrared thermography

LVs:

Longitudinal vortex

NCWPs:

Novel combined winglet pairs

PIV:

Particle image velocimetry

PRVGs:

Punched rectangular vortex generators

PTVGs:

Punched triangular vortex generators

RWVGs:

Rectangular winglet vortex generators

VGs:

Vortex generators

References

  1. Zohuri B. Compact heat exchangers. Berlin: Springer; 2016.

    Google Scholar 

  2. Tang L, Zeng M, Wang Q. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns. Exp Therm Fluid Sci. 2009;33(5):818–27.

    Google Scholar 

  3. Wang Q, et al. Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl Energy. 2014;135:748–77.

    Google Scholar 

  4. Hoseini SS, Najafi G, Ghobadian B. Experimental and numerical investigation of heat transfer and turbulent characteristics of a novel EGR cooler in diesel engine. Appl Therm Eng. 2016;108:1344–56.

    Google Scholar 

  5. Hoseini SS, et al. Experimental and numerical analysis of flow and heat transfer characteristics of EGR cooler in diesel engine. Appl Therm Eng. 2018;140:745–58.

    Google Scholar 

  6. Southall D, Le Pierres R, Dewson SJ. Design considerations for compact heat exchangers. In: Proceedings of ICAPP. 2008.

  7. Kakaç S, Bergles AE, Fernandes EO (Eds.). Two-phase flow heat exchangers: thermal-hydraulic fundamentals and design (Vol. 143). Springer. 2012.

  8. He Y-L, et al. Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators. Appl Therm Eng. 2013;61(2):770–83.

    Google Scholar 

  9. Xie G, Wang Q, Sunden B. Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows. Appl Therm Eng. 2009;29(1):1–16.

    CAS  Google Scholar 

  10. Han H, et al. A numerical study on compact enhanced fin-and-tube heat exchangers with oval and circular tube configurations. Int J Heat Mass Transf. 2013;65:686–95.

    Google Scholar 

  11. Hong Y, et al. Heat transfer and fluid flow behaviors in a tube with modified wire coils. Int J Heat Mass Transf. 2018;124:1347–60.

    Google Scholar 

  12. Tang L, et al. Air inlet angle influence on the air-side heat transfer and flow friction characteristics of a finned oval tube heat exchanger. Int J Heat Mass Transf. 2019;145:118702.

    Google Scholar 

  13. Zhang J, et al. Air-side heat transfer characteristics under wet conditions at lower ambient pressure of fin-and-tube heat exchanger. Int J Heat Mass Transf. 2019;142:118439.

    Google Scholar 

  14. Jafari, A., CFD simulation of complex phenomena containing suspensions and flow through porous media. 2008, Lappeenarata University of Technology. p. 112 pages, 10 appendices.

  15. Tu J, Yeoh GH, Liu C. Computational fluid dynamics—a practical approach. Amsterdam: Elsevier; 2008.

    Google Scholar 

  16. Paul S, Tachie M, Ormiston S. Experimental study of turbulent cross-flow in a staggered tube bundle using particle image velocimetry. Int J Heat Fluid Flow. 2007;28(3):441–53.

    Google Scholar 

  17. Dong J, et al. Experimental and numerical investigation of thermal-hydraulic performance in wavy fin-and-flat tube heat exchangers. Appl Therm Eng. 2010;30(11):1377–86.

    Google Scholar 

  18. Wu J, et al. Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator. Energy Convers Manag. 2012;57:42–8.

    Google Scholar 

  19. Dong J, et al. Experimental study on thermalhydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger. Appl Therm Eng. 2013;51(1–2):32–9.

    CAS  Google Scholar 

  20. Blecich P. Experimental investigation of the effects of airflow nonuniformity on performance of a fin-and-tube heat exchanger. Int J Refrig. 2015;59:65–74.

    Google Scholar 

  21. Duan F, et al. Numerical study of laminar flow and heat transfer characteristics in the fin side of the intermittent wavy finned flat tube heat exchanger. Appl Therm Eng. 2016;103:112–27.

    Google Scholar 

  22. Kim YH, Kim YC, Kim JR, Sin DS. Effects of fin and tube alignment on the heat transfer performance of finned-tube heat exchangers with large fin pitch. 2004.

  23. Wongwises S, Chokeman Y. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers. Energy Convers Manag. 2005;46(13–14):2216–31.

    CAS  Google Scholar 

  24. Caliskan S. Experimental investigation of heat transfer in a channel with new winglet-type vortex generators. Int J Heat Mass Transf. 2014;78:604–14.

    Google Scholar 

  25. Arora A, Subbarao PMV, Agarwal RS. Development of parametric space for the vortex generator location for improving thermal compactness of an existing inline fin and tube heat exchanger. Appl Therm Eng. 2016;98:727–42.

    Google Scholar 

  26. Zdanski P, Pauli D, Dauner F. Effects of delta winglet vortex generators on flow of air over in-line tube bank: a new empirical correlation for heat transfer prediction. Int Commun Heat Mass Transf. 2015;67:89–96.

    Google Scholar 

  27. Khan MG, Fartaj A, Ting DS-K. An experimental characterization of cross-flow cooling of air via an in-line elliptical tube array. Int J Heat Fluid Flow. 2004;25(4):636–48.

    CAS  Google Scholar 

  28. Wang C-C, et al. An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration. Int J Heat Mass Transf. 2015;80:281–7.

    Google Scholar 

  29. Zhang Y-H, et al. Comparison of heat transfer performance of tube bank fin with mounted vortex generators to tube bank fin with punched vortex generators. Exp Thermal Fluid Sci. 2008;33(1):58–66.

    Google Scholar 

  30. Čarija Z, et al. Heat transfer analysis of fin-and-tube heat exchangers with flat and louvered fin geometries. Int J Refrig. 2014;45:160–7.

    Google Scholar 

  31. Bilen K, Akyol U, Yapici S. Heat transfer and friction correlations and thermal performance analysis for a finned surface. Energy Convers Manag. 2001;42(9):1071–83.

    CAS  Google Scholar 

  32. Kim Y, Kim Y. Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch. Int J Refrig. 2005;28(6):851–8.

    CAS  Google Scholar 

  33. Ibrahim TA, Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow. Int J Therm Sci. 2009;48(11):2148–58.

    Google Scholar 

  34. Toolthaisong S, Kasayapanand N. Effect of attack angles on air side thermal and pressure drop of the cross flow heat exchangers with staggered tube arrangement. Energy Procedia. 2013;34:417–29.

    Google Scholar 

  35. Tahseen TA, Rahman M, Ishak M. Experimental study on heat transfer and friction factor in laminar forced convection over flat tube in channel flow. Procedia Eng. 2015;105:46–55.

    Google Scholar 

  36. Bahaidarah HM, Ijaz M, Anand N. Numerical study of fluid flow and heat transfer over a series of in-line noncircular tubes confined in a parallel-plate channel. Numer Heat Transf Part B Fundam. 2006;50(2):97–119.

    Google Scholar 

  37. Khoshvaght Aliabadi M, et al. 3D-CFD simulation and neural network model for the j and f factors of the wavy fin-and-flat tube heat exchangers. Braz J Chem Eng. 2011;28(3):505–20.

    Google Scholar 

  38. Astarita T, Cardone G, Carlomagno G. Infrared thermography: an optical method in heat transfer and fluid flow visualisation. Opt Lasers Eng. 2006;44(3):261–81.

    Google Scholar 

  39. Astarita T, et al. A survey on infrared thermography for convective heat transfer measurements. Opt Laser Technol. 2000;32(7):593–610.

    CAS  Google Scholar 

  40. Leblay P, et al. Characterisation of the hydraulic maldistribution in a heat exchanger by local measurement of convective heat transfer coefficients using infrared thermography. Int J Refrig. 2014;45:73–82.

    Google Scholar 

  41. Vintrou S, et al. Quantitative infrared investigation of local heat transfer in a circular finned tube heat exchanger assembly. Int J Heat Fluid Flow. 2013;44:197–207.

    Google Scholar 

  42. Ay H, Jang J, Yeh J-N. Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography. Int J Heat Mass Transf. 2002;45(20):4069–78.

    Google Scholar 

  43. Bougeard D. Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly. Int J Heat Fluid Flow. 2007;28(5):988–1002.

    CAS  Google Scholar 

  44. Cao X, et al. Particle image velocimetry measurement of indoor airflow field: a review of the technologies and applications. Energy Build. 2014;69:367–80.

    Google Scholar 

  45. Zhang QS, Glasenapp T, Liu YZ. PIV measurement of fluid flow through staggered tube array. In: Proceedings of 13th Asian Congress of Fluid Mechanics 17–21 December 2010, Dhaka, Bangladesh.

  46. Jang J-Y, Wu M-C, Chang W-J. Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers. Int J Heat Mass Transf. 1996;39(14):3057–66.

    CAS  Google Scholar 

  47. Chen H-T, Hsu W-L. Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings. Int J Heat Mass Transf. 2007;50(9):1750–61.

    Google Scholar 

  48. Salviano LO, Dezan DJ, Yanagihara JI. Thermal-hydraulic performance optimization of inline and staggered fin-tube compact heat exchangers applying longitudinal vortex generators. Appl Therm Eng. 2016;95:311–29.

    Google Scholar 

  49. Gholami A, Wahid MA, Mohammed HA. Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns. Int J Heat Mass Transf. 2017;106:573–92.

    CAS  Google Scholar 

  50. Lei Y, et al. Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators. Int J Heat Mass Transf. 2017;111:299–311.

    Google Scholar 

  51. Jiang Q, et al. Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications. Cryogenics. 2018;91:58–67.

    CAS  Google Scholar 

  52. Zhao L, et al. Parametric study on rectangular finned elliptical tube heat exchangers with the increase of number of rows. Int J Heat Mass Transf. 2018;126:871–93.

    Google Scholar 

  53. Ke H, et al. Thermal-hydraulic performance and optimization of attack angle of delta winglets in plain and wavy finned-tube heat exchangers. Appl Therm Eng. 2019;150:1054–65.

    Google Scholar 

  54. Awais M, Bhuiyan AA. Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): a parametric study. Int J Therm Sci. 2019;140:154–66.

    Google Scholar 

  55. Dalkilic AS, et al. Empirical correlations for the determination of R134a’s convective heat transfer coefficient in horizontal and vertical evaporators having smooth and corrugated tubes. Int Commun Heat Mass Transf. 2016;76:85–97.

    CAS  Google Scholar 

  56. Rocha L, Saboya F, Vargas J. A comparative study of elliptical and circular sections in one-and two-row tubes and plate fin heat exchangers. Int J Heat Fluid Flow. 1997;18(2):247–52.

    CAS  Google Scholar 

  57. Lotfi B, Sundén B, Wang Q. An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Appl Energy. 2016;162:1282–302.

    Google Scholar 

  58. Xiaoping T, Huahe L, Xiangfei L. CFD simulation and experimental study on air-side performance for MCHX. International Refrigeration and Air Conditioning Conference. Paper 1023. 2010.

  59. Liu X, Yu J, Yan G. A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches. Int J Heat Mass Transf. 2016;100:199–207.

    Google Scholar 

  60. Karmo D, Ajib S, Al Khateeb A. New method for designing an effective finned heat exchanger. Appl Therm Eng. 2013;51(1):539–50.

    Google Scholar 

  61. Bilirgen H, Dunbar S, Levy EK. Numerical modeling of finned heat exchangers. Appl Therm Eng. 2013;61(2):278–88.

    CAS  Google Scholar 

  62. Gong B, Wang L-B, Lin Z-M. Heat transfer characteristics of a circular tube bank fin heat exchanger with fins punched curve rectangular vortex generators in the wake regions of the tubes. Appl Therm Eng. 2015;75:224–38.

    Google Scholar 

  63. Wang H, et al. Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method. Appl Therm Eng. 2016;103:128–38.

    Google Scholar 

  64. Du J, Yang MN, Yang SF. Correlations and optimization of a heat exchanger with offset fins by genetic algorithm combining orthogonal design. Appl Therm Eng. 2016;107:1091–103.

    Google Scholar 

  65. Singh S, Sørensen K, Condra TJ. Influence of the degree of thermal contact in fin and tube heat exchanger: a numerical analysis. Appl Therm Eng. 2016;107:612–24.

    CAS  Google Scholar 

  66. He Y, et al. Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. Int J Heat Mass Transf. 2012;55(21):5449–58.

    Google Scholar 

  67. Wu X, et al. Numerical simulation of heat transfer and fluid flow characteristics of composite fin. Int J Heat Mass Transf. 2014;75:414–24.

    Google Scholar 

  68. Lotfi B, et al. 3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators. Energy. 2014;73:233–57.

    Google Scholar 

  69. Yaïci W, Ghorab M, Entchev E. 3D CFD study of the effect of inlet air flow maldistribution on plate-fin-tube heat exchanger design and thermal–hydraulic performance. Int J Heat Mass Transf. 2016;101:527–41.

    Google Scholar 

  70. Huang L, et al. Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations. Chin J Chem Eng. 2017;25(8):1101–8.

    CAS  Google Scholar 

  71. Reddy KVK, et al. CFD analysis of a helically coiled tube in tube heat exchanger. Mater Today Proc. 2017;4(2, Part A):2341–9.

    Google Scholar 

  72. Amanowicz Ł. Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers—experimental and CFD investigations. Appl Energy. 2018;226:849–61.

    Google Scholar 

  73. Vivekh P, et al. Theoretical performance analysis of silica gel and composite polymer desiccant coated heat exchangers based on a CFD approach. Energy Convers Manag. 2019;187:423–46.

    CAS  Google Scholar 

  74. Fsadni AM, Whitty JP. A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers. Int J Heat Mass Transf. 2016;95:551–65.

    Google Scholar 

  75. Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: a review. Int J Heat Mass Transf. 2014;79:417–31.

    CAS  Google Scholar 

  76. Tahseen TA, Ishak M, Rahman M. An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger. Renew Sustain Energy Rev. 2015;43:363–80.

    Google Scholar 

  77. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev. 2013;19:64–81.

    Google Scholar 

  78. Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev. 2012;16(8):5951–93.

    CAS  Google Scholar 

  79. Lin Z-M, et al. Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators. Appl Therm Eng. 2015;88:198–210.

    Google Scholar 

  80. Wu J, Tao W. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle. Appl Therm Eng. 2007;27(14):2609–17.

    Google Scholar 

  81. Song K, Wang L. Effects of longitudinal vortex interaction on periodically developed flow and heat transfer of fin-and-tube heat exchanger. Int J Therm Sci. 2016;109:206–16.

    Google Scholar 

  82. Sinha A, et al. Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. Int J Heat Mass Transf. 2016;101:667–81.

    CAS  Google Scholar 

  83. Jacobi A, Shah R. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp Thermal Fluid Sci. 1995;11(3):295–309.

    Google Scholar 

  84. Fiebig M. Vortex generators for compact heat exchangers. J Enhanc Heat Transf. 1995;2(1–2):43–61.

    Google Scholar 

  85. Allison C, Dally B. Effect of a delta-winglet vortex pair on the performance of a tube–fin heat exchanger. Int J Heat Mass Transf. 2007;50(25):5065–72.

    Google Scholar 

  86. Aris M, et al. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng. 2011;31(14):2230–40.

    CAS  Google Scholar 

  87. Kattea WA. An experimental study on the effect of shape and location of vortex generators ahead of a heat exchanger. Department of Machines and Equipment Engineering/University of Technology/Iraq, Al-Khwarizmi Eng J, 2012;8(2):12–29.

  88. Tian L, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements. Int J Therm Sci. 2009;48(9):1765–76.

    Google Scholar 

  89. Lei YG, He YL, Tian LT, Chu P, Tao WQ. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chem Eng Sci. 2010;65(5):1551–62.

    CAS  Google Scholar 

  90. Akcayoglu A et al. Optimum distance between vortex generators used in modern thermal systems. Eur Sci J. Special Edition 2014.

  91. Du XZ, et al. Heat transfer enhancement of wavy finned flat tube by punched longitudinal vortex generators. Int J Heat Mass Transf. 2014;75:368–80.

    Google Scholar 

  92. Lin Z-M, Wang L-B, Zhang Y-H. Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Appl Therm Eng. 2014;73(2):1465–76.

    Google Scholar 

  93. Li L, et al. Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators. Int J Therm Sci. 2015;92:85–96.

    Google Scholar 

  94. Joardar A, Jacobi A. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig. 2008;31(1):87–97.

    CAS  Google Scholar 

  95. Gholami AA, Wahid MA, Mohammed HA. Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transf. 2014;54:132–40.

    Google Scholar 

  96. Wang W, Bao Y, Wang Y. Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators. Appl Therm Eng. 2015;86:27–34.

    Google Scholar 

  97. Välikangas T, et al. Fin-and-tube heat exchanger enhancement with a combined herringbone and vortex generator design. Int J Heat Mass Transf. 2018;118:602–16.

    Google Scholar 

  98. Chimres N, Wang C-C, Wongwises S. Optimal design of the semi-dimple vortex generator in the fin and tube heat exchanger. Int J Heat Mass Transf. 2018;120:1173–86.

    Google Scholar 

  99. Yu C, et al. Numerical study on turbulent heat transfer performance of a new compound parallel flow shell and tube heat exchanger with longitudinal vortex generator. Appl Therm Eng. 2020;164:114449.

    Google Scholar 

  100. Junqi D, et al. Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers. Appl Therm Eng. 2007;27(11):2066–73.

    Google Scholar 

  101. Tao Y, et al. Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. Int J Therm Sci. 2007;46(8):768–78.

    Google Scholar 

  102. Xu C, et al. Experimental study on heat transfer performance improvement of wavy finned flat tube. Appl Therm Eng. 2015;85:80–8.

    Google Scholar 

  103. Islam A, Mozumder A. Forced convection heat transfer performance of an internally finned tube. J Mech Eng. 2009;40(1):54–62.

    Google Scholar 

  104. Kim D-K. Thermal optimization of internally finned tube with variable fin thickness. Appl Therm Eng. 2016;102:1250–61.

    Google Scholar 

  105. Peng H, et al. Thermo-hydraulic performances of internally finned tube with a new type wave fin arrays. Appl Therm Eng. 2016;98:1174–88.

    Google Scholar 

  106. Nuntaphan A, et al. Effect of inclination angle on free convection thermal performance of louver finned heat exchanger. Int J Heat Mass Transf. 2007;50(1–2):361–6.

    Google Scholar 

  107. Sanders PA, Thole KA. Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers. Int J Heat Mass Transf. 2006;49(21):4058–69.

    Google Scholar 

  108. Huisseune H, et al. Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transf. 2013;57(1):58–72.

    Google Scholar 

  109. Achaichia A, Cowell T. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Exp Therm Fluid Sci. 1988;1(2):147–57.

    Google Scholar 

  110. Jeon CD, Lee J. Local heat transfer characteristics of louvered plate fin surfaces. Trans Am Soc Heat Refrig Air Cond Eng. 2001;107(1):338–45.

    Google Scholar 

  111. Chang Y-J, Wang C-C. A generalized heat transfer correlation for louver fin geometry. Int J Heat Mass Transf. 1997;40(3):533–44.

    CAS  Google Scholar 

  112. Chang Y-J, Wang C-C. Air side performance of brazed aluminum heat exchangers. J Enhanc Heat Transf. 1996;3(1):15–28.

    Google Scholar 

  113. Lyman A, et al. Scaling of heat transfer coefficients along louvered fins. Exp Therm Fluid Sci. 2002;26(5):547–63.

    Google Scholar 

  114. Dong JQ, et al. Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers. Energy Convers Manag. 2007;48(5):1506–15.

    CAS  Google Scholar 

  115. Atkinsona K, et al. Two-and three-dimensional numerical models of flow and heat transfer over louvred fin arrays in compact heat exchangers. Int J Heat Mass Transf. 1998;41(24):4063–80.

    Google Scholar 

  116. Bahrami S et al. Thermal-hydraulic study of multi-louvered fins in compact heat exchangers and recommendations for improvement. J Enhanc Heat Transf. 2012;19(1).

    CAS  Google Scholar 

  117. Malapure V, Mitra SK, Bhattacharya A. Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger. Int J Therm Sci. 2007;46(2):199–211.

    Google Scholar 

  118. Huisseune H, et al. Numerical study of flow deflection and horseshoe vortices in a louvered fin round tube heat exchanger. J Heat Transf. 2012;134(9):091801.

    Google Scholar 

  119. Liang Y, et al. Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers. Appl Therm Eng. 2015;87:305–15.

    Google Scholar 

  120. Huisseune H, et al. Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transf. 2013;56(1):475–87.

    Google Scholar 

  121. Dezan DJ, Salviano LO, Yanagihara JI. Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generators. Appl Therm Eng. 2016;101:576–91.

    Google Scholar 

  122. Nakayama W, Xu L. Enhanced fins for air-cooled heat exchangers—heat transfer and friction correlations. In: Proceedings of the first ASME/JSME thermal engineering joint conference. 1983.

  123. Garimella S, Coleman JW, Wicht A. Tube and fin geometry alternatives for the design of absorption-heat-pump heat exchangers. J Enhanc Heat Transf. 1997;4(3).

    Google Scholar 

  124. Wang C-C, Tao W-H, Chang C-J. An investigation of the airside performance of the slit fin-and-tube heat exchangers. Int J Refrig. 1999;22(8):595–603.

    CAS  Google Scholar 

  125. Du Y-J, Wang C-C. An experimental study of the airside performance of the superslit fin-and-tube heat exchangers. Int J Heat Mass Transf. 2000;43(24):4475–82.

    Google Scholar 

  126. Kong Y, et al. Effects of continuous and alternant rectangular slots on thermo-flow performances of plain finned tube bundles in in-line and staggered configurations. Int J Heat Mass Transf. 2016;93:97–107.

    Google Scholar 

  127. Kong YQ, et al. Air-side flow and heat transfer characteristics of flat and slotted finned tube bundles with various tube pitches. Int J Heat Mass Transf. 2016;99:357–71.

    Google Scholar 

  128. Lemouedda A, et al. Numerical investigations for the optimization of serrated finned-tube heat exchangers. Appl Therm Eng. 2011;31(8):1393–401.

    Google Scholar 

  129. Nuntaphan A, Kiatsiriroat T, Wang C. Air side performance at low Reynolds number of cross-flow heat exchanger using crimped spiral fins. Int Commun Heat Mass Transf. 2005;32(1):151–65.

    Google Scholar 

  130. Nuntaphan A, Kiatsiriroat T, Wang C. Heat transfer and friction characteristics of crimped spiral finned heat exchangers with dehumidification. Appl Therm Eng. 2005;25(2):327–40.

    CAS  Google Scholar 

  131. Nuntaphan A, Kiatsiriroat T. Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit. Exp Therm Fluid Sci. 2007;31(8):1103–9.

    CAS  Google Scholar 

  132. Pongsoi P, et al. Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers. Int J Heat Mass Transf. 2013;59:75–82.

    Google Scholar 

  133. Pongsoi P, et al. Effect of fin pitches on the air-side performance of crimped spiral fin-and-tube heat exchangers with a multipass parallel and counter cross-flow configuration. Int J Heat Mass Transf. 2011;54(9):2234–40.

    Google Scholar 

  134. Pongsoi P, Pikulkajorn S, Wongwises S. Effect of fin pitches on the optimum heat transfer performance of crimped spiral fin-and-tube heat exchangers. Int J Heat Mass Transf. 2012;55(23):6555–66.

    Google Scholar 

  135. Pongsoi P, et al. Effect of number of tube rows on the air-side performance of crimped spiral fin-and-tube heat exchanger with a multipass parallel and counter cross-flow configuration. Int J Heat Mass Transf. 2012;55(4):1403–11.

    Google Scholar 

  136. Rao Y, Li B, Feng Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples. Exp Therm Fluid Sci. 2015;61:201–9.

    Google Scholar 

  137. Tay C, et al. Development of flow structures over dimples. Exp Therm Fluid Sci. 2014;52:278–87.

    Google Scholar 

  138. Vicente PG, Garcı́a A, Viedma A. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int J Heat Mass Transf. 2002;45(3):543–53.

    CAS  Google Scholar 

  139. Chen J, Müller-Steinhagen H, Duffy GG. Heat transfer enhancement in dimpled tubes. Appl Therm Eng. 2001;21(5):535–47.

    CAS  Google Scholar 

  140. Nascimento IP, Garcia EC. Heat transfer performance enhancement in compact heat exchangers by using shallow square dimples in flat tubes. Appl Therm Eng. 2016;96:659–70.

    Google Scholar 

  141. Turnow J, et al. Flow structures and heat transfer on dimples in a staggered arrangement. Int J Heat Fluid Flow. 2012;35:168–75.

    Google Scholar 

  142. Afanasyev V, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate. Exp Therm Fluid Sci. 1993;7(1):1–8.

    Google Scholar 

  143. Chyu M et al. Concavity enhanced heat transfer in an internal cooling passage. In: ASME 1997 international gas turbine and aeroengine congress and exhibition. American Society of Mechanical Engineers; 1997.

  144. Mahmood G et al. Local heat transfer and flow structure on and above a dimpled surface in a channel. In: ASME turbo expo 2000: power for land, sea, and air. American Society of Mechanical Engineers; 2000.

  145. Chen Y, Chew Y, Khoo B. Heat transfer and flow structure on periodically dimple–protrusion patterned walls in turbulent channel flow. Int J Heat Mass Transf. 2014;78:871–82.

    Google Scholar 

  146. Bi C, Tang G, Tao W. Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Appl Therm Eng. 2013;55(1):121–32.

    Google Scholar 

  147. Wang Y, et al. Heat transfer and hydrodynamics analysis of a novel dimpled tube. Exp Thermal Fluid Sci. 2010;34(8):1273–81.

    Google Scholar 

  148. Katkhaw N, et al. Heat transfer behavior of flat plate having 45° ellipsoidal dimpled surfaces. Case Stud Therm Eng. 2014;2:67–74.

    Google Scholar 

  149. Wei X-Q, et al. The fluid flow and heat transfer characteristics in the channel formed by flat tube and dimpled fin. Int J Therm Sci. 2016;104:86–100.

    Google Scholar 

  150. Kwon HG, Hwang SD, Cho HH. Measurement of local heat/mass transfer coefficients on a dimple using naphthalene sublimation. Int J Heat Mass Transf. 2011;54(5):1071–80.

    CAS  Google Scholar 

  151. Sangtarash F, Shokuhmand H. Experimental and numerical investigation of the heat transfer augmentation and pressure drop in simple, dimpled and perforated dimpled louver fin banks with an in-line or staggered arrangement. Appl Therm Eng. 2015;82:194–205.

    Google Scholar 

  152. Khanmohammadi F, Farhadi M, Ali Rabienataj Darzi A. Numerical investigation of heat transfer and fluid flow characteristics inside tube with internally star fins. Heat Mass Transf. 2019;55(7):1901–11.

    CAS  Google Scholar 

  153. Chingulpitak S, et al. Fluid flow and heat transfer characteristics of heat sinks with laterally perforated plate fins. Int J Heat Mass Transf. 2019;138:293–303.

    Google Scholar 

  154. Sakr R, Berbish NM, Abd-Aziz AA. Influence of free stream turbulence intensity on heat transfer and flow around four in-line elliptic cylinders in cross flow. Int J Chem React Eng 2010;8(1).

  155. Terukazu O, Hideya N, Yukiyasu T. Heat transfer and flow around an elliptic cylinder. Int J Heat Mass Transf. 1984;27(10):1771–9.

    Google Scholar 

  156. Alawadhi EM. Laminar forced convection flow past an in-line elliptical cylinder array with inclination. J Heat Transf. 2010;132(7):071701.

    Google Scholar 

  157. Matos R, et al. Optimally staggered finned circular and elliptic tubes in forced convection. Int J Heat Mass Transf. 2004;47(6):1347–59.

    Google Scholar 

  158. Yang S-A, Li G-C, Yang W-J. Thermodynamic optimization of free convection film condensation on a horizontal elliptical tube with variable wall temperature. Int J Heat Mass Transf. 2007;50(23):4607–13.

    CAS  Google Scholar 

  159. Erek A, Özerdem B, Bilir L, Ilken Z. Effect of geometrical parameters on heat transfer and pressure drop characteristics of plate fin and tube heat exchangers. Appl Therm Eng. 2005;25(14–15):2421–31.

    Google Scholar 

  160. Liang X et al. Experimental investigation on condensation performance of fin-and-flat-tube heat exchanger. In: International refrigeration and air conditioning conference at Purdue, July 12–15, 2010.

  161. Marwaan A-K, Mossad R. Optimization of the heat exchanger in a flat plate indirect heating integrated collector storage solar water heating system. Renew Energy. 2013;57:413–21.

    Google Scholar 

  162. Nagarani N, et al. Review of utilization of extended surfaces in heat transfer problems. Renew Sustain Energy Rev. 2014;29:604–13.

    Google Scholar 

  163. Min J, Webb RL. Numerical analyses of effects of tube shape on performance of a finned tube heat exchanger. J Enhanc Heat Transf. 2004;11(1):49–56.

    Google Scholar 

  164. Gustafsson O, Stignor CH, Dalenbäck J-O. Heat exchanger design aspects related to noise in heat pump applications. Appl Therm Eng. 2016;93:742–9.

    Google Scholar 

  165. Wang YQ, Penner L, Ormiston S. Analysis of laminar forced convection of air for crossflow in banks of staggered tubes. Numer Heat Transf Part A Appl. 2000;38(8):819–45.

    CAS  Google Scholar 

  166. Jayavel S, Tiwari S. Finite volume algorithm to study the effect of tube separation in flow past channel confined tube banks. Eng Appl Comput Fluid Mech. 2010;4(1):39–57.

    Google Scholar 

  167. Kim T. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks. Ann Nucl Energy. 2013;57:209–15.

    Google Scholar 

  168. Žukauskas A. Heat transfer from tubes in crossflow. Adv Heat Transf. 1972;8:93–160.

    Google Scholar 

  169. Mon M. Numerical investigation of air-side heat transfer and pressure drop in circular finned-tube heat exchangers. In: Von der Fakultät für Maschinenbau, Verfahrens-und Energietechnik. 2003, Technischen Universität Bergakademie Freiberg: Germany.

  170. Torikoshi K, Xi G. A numerical study of flow and thermal fields in finned tube heat exchangers (effect of the tube diameter). American Society of Mechanical Engineers, New York, NY (United States); 1995.

  171. Mirkovic Z. Heat transfer and flow resistance correlation for helically finned and staggered tube banks in crossflow. Heat Exch Des Theory Source Book; 1974; 559–84.

  172. Mavridou SG, Konstandinidis E, Bouris DG. Experimental evaluation of pairs of inline tubes of different size as components for heat exchanger tube bundles. Int J Heat Mass Transf. 2015;90:280–90.

    Google Scholar 

  173. Cobian-Iñiguez J, et al. Numerically-based parametric analysis of plain fin and tube compact heat exchangers. Appl Therm Eng. 2015;86:1–13.

    Google Scholar 

  174. Choi JM, et al. Air side heat transfer coefficients of discrete plate finned-tube heat exchangers with large fin pitch. Appl Therm Eng. 2010;30(2):174–80.

    Google Scholar 

  175. Ma X, et al. Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions. Int J Refrig. 2007;30(7):1153–67.

    CAS  Google Scholar 

  176. Cho H, et al. Simulation results for the effect of fin geometry on the performance of a concentric heat exchanger. Int J Air-Cond Refrig. 2014;22(04):1450026.

    CAS  Google Scholar 

  177. Zhao Y, et al. Effect of corrosion on performance of fin-and-tube heat exchangers with different fin materials. Exp Therm Fluid Sci. 2012;37:98–103.

    CAS  Google Scholar 

  178. Deng HW et al. Effect of pin-fin material on heat transfer and flow resistance characteristic of rectangular channel. In: Advanced materials research; 2013. Trans Tech Publ.

  179. Chen Z, Ren J. Effect of fin spacing on the heat transfer and pressure drop of a two-row plate fin and tube heat exchanger. Int J Refrig-revue Internationale Du Froid. 1988;11(6):356–60.

    CAS  Google Scholar 

  180. Romero-Méndez R, et al. Effect of fin spacing on convection in a plate fin and tube heat exchanger. Int J Heat Mass Transf. 2000;43(1):39–51.

    Google Scholar 

  181. Salviano LO, Dezan DJ, Yanagihara JI. Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization. Int J Heat Mass Transf. 2015;82:373–87.

    Google Scholar 

  182. Liu C, Bu W, Xu D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. Int J Heat Mass Transf. 2017;111:65–82.

    Google Scholar 

  183. Khan TA, Li W. Optimal design of plate-fin heat exchanger by combining multi-objective algorithms. Int J Heat Mass Transf. 2017;108:1560–72.

    Google Scholar 

Download references

Acknowledgements

The authors would like to be obliged to Universiti Malaysia Pahang for providing the necessary support under project no. RDU150375

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, A.Y., Oumer, A.N., Najafi, G. et al. State of the art on flow and heat transfer performance of compact fin-and-tube heat exchangers. J Therm Anal Calorim 139, 2739–2768 (2020). https://doi.org/10.1007/s10973-019-08971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08971-6

Keywords

Navigation