Skip to main content
Log in

An Implementation Investigation on Hydrothermal Behavior of Heat Exchanger with a Novel Finned Tube Designed

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The heat exchanger is a core component of all thermal systems. Thus, high-efficiency heat exchangers that can save energy and material are required. Heat transfer improvement in heat exchangers by applying the newly designed fin configuration increases the heat exchanger efficiency. Moreover, the newly designed finned heat exchanger improved heat transfer, resulting in a significant reduction in the heat exchanger size. A compact countercurrent water–water heat exchanger with a high rate of heat transfer while using the least amount of space was achieved. The newly designed finned tube on the outer surface of the inner tube in this study increased the heat transfer characteristics of the double-pipe heat exchanger. An insulated Perspex shell with an inner diameter of 54 mm, 2000 mm in length, and 3 mm thick. Copper tubes with and without rectangular copper fins are studied and compared. The smooth copper tube was 2250 mm in length with 20 mm and 22 mm inner and outer diameters, respectively. The experimental results showed that the Nusselt number and effectiveness of the newly proposed finned tube increased by 95% and 127%, respectively, compared to those of the smooth tube at the same Reynolds number, while the heat transfer coefficient increased by 53% over a smooth tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

The external surface area of the internal coiled tube (m2)

C p :

Heat capacity (J/kg °C)

d i :

Inside diameter (m)

d o :

Outside diameter (m)

m :

Mass-flow rate (kg/s)

Q :

Heat transfer rate (W)

REh :

Hot fluid Reynold number

REc :

Cold fluid Reynold number

q :

Heat flux (W/m2)

T ci :

Inlet chilly fluid temp. (°C)

T hi :

Inlet hot fluid temp. (°C)

U :

Overall heat transfer coefficient (W/m2 °C)

V :

Volumetric flow rate (m3/s)

\(\mu_{h}\) :

Dynamic viscosity of the fluid (N s/m2)

\(\rho_{h}\) :

The density of the fluid (kg/m3)

LMTD:

The logarithmic mean temperature difference

Nu:

Nusselt number

D h :

Equivalent hydraulic diameter

K h :

Thermal conductivity (W/m K)

p :

Pressure drop (N/m2)

ƒ:

Friction factor

u :

Velocity (m/s)

H.E:

Heat exchanger

γ :

Kinematic viscosity (m2/s)

References

  1. Reddy, N.S.; Rajagopal, K.; Veena, P.H.: Experimental investigation of heat transfer enhancement of a double pipe heat exchanger with helical fins in the annulus side. Int. J. Dyn. Fluids 13(2), 285–293 (2017)

    Google Scholar 

  2. Mohsen, O.A.; Muhammed, M.A.R.; Hasan, B.O.: Heat transfer enhancement in a double pipe heat exchanger using different fin geometries in turbulent flow. Iran. J. Sci. Technol. Trans. Mech. Eng. 45, 461–471 (2021)

    Article  Google Scholar 

  3. Zhang, L.; Guo, H.; Wu, J.; Du, W.: Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat Mass Transf. 48, 1113–1124 (2012)

    Article  ADS  CAS  Google Scholar 

  4. Mathanraj, V.; Krishna, V.L.; Babu, J.L.V.; Kumar, S.A.: Experimental investigation on heat transfer in double pipe heat exchanger employing triangular fins. IOP Conf. Ser. Mater. Sci. Eng. 402(1), 12137 (2018)

    Article  Google Scholar 

  5. Sivalakshmi, S.; Raja, M.; Gowtham, G.: Effect of helical fins on the performance of a double pipe heat exchanger. Mater. Today Proc. 43, 1128–1131 (2021)

    Article  CAS  Google Scholar 

  6. Mule, B.A.; Hatkar, D.N.; Bembde, M.S.: Analysis of double pipe heat exchanger with helical fins. Int. Res. J. Eng. Technol. 4(8), 72–2395 (2017)

    Google Scholar 

  7. Omidi, M.; Farhadi, M.; Jafari, M.: A comprehensive review on double pipe heat exchangers. Appl. Therm. Eng. 110, 1075–1090 (2017)

    Article  Google Scholar 

  8. El Maakoul, A.; Feddi, K.; Saadeddine, S.; Abdellah, A.B.; El Metoui, M.: Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy Convers. Manag. 210, 112710 (2020)

    Article  Google Scholar 

  9. Syed, K.S.; Ishaq, M.; Iqbal, Z.; Hassan, A.: Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness. Energy Convers. Manag. 98, 69–80 (2015)

    Article  Google Scholar 

  10. Hameed, V.M.; Essa, B.M.: Experimental and numerical investigation to evaluate the performance of triangular finned tube heat exchanger. Int. J. Energy Environ. 6(6), 553 (2015)

    CAS  Google Scholar 

  11. El Maakoul, A.; El Metoui, M.; Abdellah, A.B.; Saadeddine, S.; Meziane, M.: Numerical investigation of the thermohydraulic performance of air-to-water double-pipe heat exchanger with helical fins. Appl. Therm. Eng. 127, 127–139 (2017)

    Article  Google Scholar 

  12. Omkar, M.S.; Pravin, A.M.; Sajid, A.H.G.; Pradeep, A.P.: Experimental investigation of double-pipe heat exchanger with helical fins on the inner rotating tube. Int. J. Res. Eng. Technol. 3(7), 98–102 (2014)

    Article  Google Scholar 

  13. Bošnjaković, M.; Čikić, A.; Muhič, S.; Holik, M.: Heat transfer correlations for star-shaped fins. Appl. Sci. 11(13), 5912 (2021)

    Article  Google Scholar 

  14. Perry, R.H.; Green, D.W.: Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  15. Holman, J.P.: Heat Transfer (Si Units) Sie. Tata McGraw-Hill Education (2008)

    Google Scholar 

  16. Indhe, M.J.; Bhatkar, V.W.: Optimization of longitudinal fin profile for double pipe heat exchanger. Int. Res. J. Eng. Technol. 2(4), 517–529 (2015)

    Google Scholar 

  17. Hameed, V.M.; Hussein, M.A.: Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat exchanger. Appl. Therm. Eng. 122, 484–491 (2017)

    Article  Google Scholar 

  18. Hameed, V.M.; Hamad, F.J.: Implementation of novel triangular fins at a helical coil heat exchanger. Chem. Eng. Process. Process Intensif. 172, 108745 (2022)

    Article  CAS  Google Scholar 

  19. Hussein, M.A.; Hameed, V.M.: Experimental investigation on the effect of semi-circular perforated baffles with semi-circular fins on air-water double pipe heat exchanger. Arab. J. Sci. Eng. 47(5), 6115–6124 (2022)

    Article  CAS  Google Scholar 

  20. Hassan, J.H., Hameed, V.M.: Evaluate the hydrothermal behavior in the heat exchanger equipped with an innovative turbulator. South Afr. J. Chem. Eng. 41, 182–192 (2022)

    Article  Google Scholar 

  21. Sertkaya, A.A.; Altınısık, K.; Dincer, K.: Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cell aluminum foam heat exchangers. Exp. Therm. Fluid Sci. 36, 86–92 (2012)

    Article  CAS  Google Scholar 

  22. Blasius, H.: Mitt, Forchungsarbeit Surbocit. VDZ 131, 1 (1913)

    Google Scholar 

  23. Chen, J.J.J.: A single correlation for mass (heat) transfer in turbulent smooth and rough tube flow. Int. Commun. Heat Mass Transf. 12(2), 219–222 (1985)

    Article  Google Scholar 

  24. Drew, T.B.; Koo, E.C.; McAdams, W.H.: The friction factor for clean round pipes. Trans. AIChE 28, 56–72 (1932)

    CAS  Google Scholar 

  25. Wafelkar, G.V.; Kamble, L.V.: Experimental performance analysis of triple tube heat exchanger with dimple tubing. Int. J. Adv. Sci. Res. 6(4), 810–816 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinous M. Hameed.

Ethics declarations

Conflict of interest

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H.A., Hameed, V.M. An Implementation Investigation on Hydrothermal Behavior of Heat Exchanger with a Novel Finned Tube Designed. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08811-2

Keywords

Navigation