Skip to main content
Log in

Analytical solution to transient inverse heat conduction problem using Green’s function

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A transient inverse heat conduction problem concerning jet impingement heat transfer has been solved analytically in this paper. Experimentally obtained transient temperature history at the non-impinging face, assumed to be the exposed surface in real practice, is the only input data. Aim of this study is to estimate two unknown thermo-physical parameters—overall heat transfer coefficient and adiabatic wall temperature—at the impinging face simultaneously. The approach of Green’s Function to accommodate both the transient convective boundary conditions and transient radiation heat loss is used to derive the forward model, which is purely an analytical method. Levenberg–Marquardt algorithm, a basic approach to optimisation, is used as a solution procedure to the inverse problem. An in-house computer code using MATLAB (version R2014a) is used for analysis. The method is applied for a case of a methane–air flame impinging on one face of a flat 3-mm-thick stainless steel plate, keeping Reynolds number of the  gas mixture 1000 and dimensionless burner tip to impinging plate distance equals to 4, while maintaining the equivalence ratio one. Inclusion of both radiation and convection losses in the Green’s function solution for the forward problem enhances the accuracy in the forward model, thereby increasing the possibility of estimating the parameters with better accuracy. The results are found to be in good agreement with the literature. This methodology is independent of flow and heating conditions, and can be applied even to high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a:

Plate thickness (m)

d:

Inner diameter of burner (m)

G:

Green’s function

h:

Heat transfer coefficient (W m−2 K−1)

k:

Thermal conductivity of plate material (W  m−1 K−1)

r:

Radius or radial distance from stagnation point (m)

t:

Time (s)

T:

Temperature (K)

x:

Axial representation

Z:

Burner tip to impinging plate distance (m)

α :

Thermal diffusivity (m2 s−1)

ε :

Emissivity

\(\lambda_{n}\) :

Eigenvalue

\(\sigma\) :

Stefan-Boltzmann constant (W m−2 K−4)

\(\theta\) :

Transformed temperature (K)

\(\tau\) :

Variable time in Green’s function (s)

amb:

Ambient

aw:

Adiabatic wall

conv:

Convection

nat:

Natural

o:

Overall

rad:

Radiation

References

  1. Bee JM, Chigier NA. Impinging jet flames. Combust Flame. 1968;12:575–86.

    Article  Google Scholar 

  2. Milson A, Chigier NA. Studies of methane and methane-air flames impinging on a cold plate. Combust Flame. 1973;21:295–305.

    Article  CAS  Google Scholar 

  3. Jackson EG, Kilham JK. Heat transfer from combustion products by forced convection. Ind Eng Chem. 1956;48:2077–9.

    Article  CAS  Google Scholar 

  4. Viskanta R. Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci. 1993;6:111–34.

    Article  CAS  Google Scholar 

  5. Baukal CE, Gebhart B. A review of semi-analytical solutions for flame impingement heat transfer. Int J Heat Mass Transf. 1996;39:2989–3002.

    Article  CAS  Google Scholar 

  6. Baukal CE Jr, Gebhart B. A review of empirical flame impingement heat transfer correlations. Int J Heat Fluid Flow. 1996;17:386–96.

    Article  CAS  Google Scholar 

  7. Chander S, Ray A. Flame impingement heat transfer: a review. Energy Convers Manag. 2005;46:2803–37.

    Article  CAS  Google Scholar 

  8. Fay JA, Riddell FR. Theory of stagnation point heat transfer in dissociated air. J Aerospace Sci. 1958;25:73–85.

    Article  Google Scholar 

  9. Sibulkin M. Heat transfer near the forward stagnation point of a body revolution. J Aeronautical Sci. 1952;9:570–1.

    Google Scholar 

  10. Conolly R, Davies RM. A study of convective heat transfer from flames. Int J Heat Mass Transf. 1972;15:2155–72.

    Article  CAS  Google Scholar 

  11. Hargrave GK, Kilham JK. The effect of turbulence intensity on convective heat transfer from premixed methane-air flames. Inst. Chem. Eng. Symp. 1984;2:1025–34.

    Google Scholar 

  12. Van der Meer TH. Stagnation point heat transfer from turbulent low reynolds number jets and flame jets. Exp Thermal Fluid Sci. 1991;4:115–216.

    Article  Google Scholar 

  13. Jambunathan K, Lai E, Moss MA, Button BL. A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow. 1992;13:106–15.

    Article  CAS  Google Scholar 

  14. Zuckerman N, Lior N. Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf. 2006;39:565–631.

    Article  CAS  Google Scholar 

  15. Qiu D, Wang C, Luo L, Wang S, Zhao Z, Wang Z. On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08901-6.

    Article  Google Scholar 

  16. Ghasemian M, Ramiar A, Ranjbar AA. Numerical investigation of boiling heat transfer in a quenching process of jet impingement considering solid temperature distribution. J Therm Anal Calorim. 2019;136(6):2409–20. https://doi.org/10.1007/s10973-018-7900-9.

    Article  CAS  Google Scholar 

  17. Mozumder AK, Monde M, Woodfield PL, Islam MA. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement. Int J Heat Mass Transf. 2006;49(17–18):2877–88.

    Article  CAS  Google Scholar 

  18. Karwa N, Gambaryan-Roisman T, Stephan P, Tropea C. Experimental investigation of circular free-surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp Thermal Fluid Sci. 2011;35(7):1435–43.

    Article  CAS  Google Scholar 

  19. Gan T, Ming T, Fang W, Liu Y, Miao L, Ren K, Ahmadi MH. Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08754-z.

    Article  Google Scholar 

  20. Kuntikana P, Prabhu SV. Isothermal air jet and premixed flame jet impingement: heat transfer characterisation and comparison. Int J Therm Sci. 2016;100:401–15.

    Article  Google Scholar 

  21. Kadam AR, Tajik AR, Hindasageri V. Heat transfer distribution of impinging flame and air jets–a comparative study. Appl Therm Eng. 2016;92:42–9.

    Article  CAS  Google Scholar 

  22. Hadipour A, Zargarabadi MR, Dehghan M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09232-2.

    Article  Google Scholar 

  23. Kowsary F, Razzaghi H, Ashjaee M. Experimental design for estimation of the distribution of the convective heat transfer coefficient for a bubbly impinging jet. J Therm Anal Calorim. 2020;140:439–56. https://doi.org/10.1007/s10973-019-08819-z.

    Article  CAS  Google Scholar 

  24. Mohaghegh MR, Rahimi AB. Single-and two-phase water jet impingement heat transfer on a hot moving surface. J Therm Anal Calorim. 2019;137(4):1401–11. https://doi.org/10.1007/s10973-019-08072-4.

    Article  CAS  Google Scholar 

  25. Zhen HS, Leung CW, Cheung CS. Heat transfer characteristics of an impinging premixed annular flame jet. Appl Therm Eng. 2012;36:386–92.

    Article  CAS  Google Scholar 

  26. Chander S, Ray A. Influence of burner geometry on heat transfer characteristics of methane/air flame impinging on flat surface. Exp Heat Transf. 2006;19:15–38.

    Article  CAS  Google Scholar 

  27. Huang XQ, Leung CW, Chan CK, Probert SD. Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl. Appl Energy. 2006;83:401–11.

    Article  CAS  Google Scholar 

  28. Remie MJ, Särner G, Cremers MF, Omrane A, Schreel KR, Aldén LE, De Goey LP. Heat-transfer distribution for an impinging laminar flame jet to a flat plate. Int J Heat Mass Transf. 2008;51:3144–52.

    Article  CAS  Google Scholar 

  29. Loubat R, Reulet P, Estebe B, Millan P. Heat flux characterisation in hot jet and flame/wall interaction by IHCP resolution coupled with infrared measurements. Quant Infrared Thermogr J. 2004;1:205–28.

    Article  Google Scholar 

  30. Hindasageri V, Vedula RP, Prabhu SV. Heat transfer distribution for impinging methane–air premixed flame jets. Appl Therm Eng. 2014;73:461–73.

    Article  CAS  Google Scholar 

  31. Kadam AR, Prabhu SV, Hindasageri V. Simultaneous estimation of heat transfer coefficient and reference temperature from impinging flame jets. Int J Therm Sci. 2018;131:48–57.

    Article  Google Scholar 

  32. Fernandes AP, Dos Santos MB, Guimarães G. An analytical transfer function method to solve inverse heat conduction problems. Appl Math Model. 2015;39:6897–914.

    Article  Google Scholar 

  33. Ozısık MN. Heat conduction. New York: John Wiley & Sons; 1993.

    Google Scholar 

  34. Morse PM, Feshbach H. Methods of theoretical physics, vol. 1–2. London: McGraw-Hill; 1953.

    Google Scholar 

  35. Ozisik MN. Boundary value problems of heat conduction. New York: Courier Corporation; 2002.

    Google Scholar 

  36. Carslaw HS, Jaeger JC. Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press; 1959.

    Google Scholar 

  37. Colaço MJ, Orlande HR, Dulikravich GS. Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng. 2006;28:1–24.

    Article  Google Scholar 

  38. Orlande HR. Inverse problems in heat transfer: new trends on solution methodologies and applications. J Heat Transf. 2012;134:25–47.

    Article  Google Scholar 

  39. Naphon P, Wiriyasart S, Arisariyawong T, Nakharintr L. ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int J Heat Mass Transf. 2019;131:329–40.

    Article  CAS  Google Scholar 

  40. Beck JV, Blackwell B, Clair CR Jr. Inverse heat conduction: Ill-posed problems. New Jersey: Wiley; 1985.

    Google Scholar 

  41. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  42. Bejan A. Convection heat transfer. 4th ed. New Jersey: John wiley & sons; 2013.

    Book  Google Scholar 

  43. Hindasageri V, Vedula RP, Prabhu SV. Blowoff stability of methane-air premixed flame on tube burners. Int J Emerg Multidiscip Fluid Sci. 2011;3:45–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Green’s function

Appendix: Derivation of Green’s function

In this section, the Green’s function of the problem under consideration is derived using classic separation of variable (SoV) technique. The advantage of Green’s function is that solution of a differential equation (say, a transient heat conduction problem) can be represented in terms of Green’s function. The solution procedure to derive the Green’s function for an one-dimensional transient heat conduction problem with transient convective boundary condition at one face and transient heat flux at another boundary is discussed in following five steps.

Step 1 Consider the homogenous version of the PDEs at Eqs. (3, 3.1, 3.2, 3.3) suitable for SoV technique and redefine as below.

$$\frac{{\partial^{2} \psi }}{{\partial x^{2} }} = \frac{1}{\alpha }\frac{\partial \psi }{\partial t} \text{ in } 0 \, < \, z \, < \, a, \, t \, > \, 0 \,\text{(Not modified and homogenous),}$$
$$- \frac{\partial \psi }{\partial x} + H\psi = 0 {\text{ at }} x \, = \, 0, \, t \, > \, 0\, \text{(Modified and homogenous)}$$
$$\frac{\partial \psi }{\partial x} = 0 {\text{ at }} x \, = \, a, \, t \, > \, 0\, {\text{(Modified and homogenous)}}$$
$$\psi (x,0) = g(x) - T_{\text{amb}} {\text{ in }} 0 \, < \, x \, < \, L$$

Step 2 The solution of the formulations at step 1 can be readily referred in literature [33] (Sect. 2-4, 2-5), and the same is given by

$$\psi (x,t) = \sum\limits_{n = 1}^{\infty } {\frac{{2\left( {\lambda_{\text{n}}^{2} + H^{2} } \right)}}{{a\left( {\lambda_{\text{n}}^{2} + H^{2} } \right) + H}}} *\cos \left( {\lambda_{\text{n}} \left( {a - x} \right)} \right)*e^{{ - \lambda_{\text{n}}^{2} \alpha (t)}} \int\limits_{{x^{/} = 0}}^{L} {\left( {g(x^{/} ) - T_{\text{amb}} } \right)} \cos \left( {\lambda_{\text{n}} \left( {a - x^{/} } \right)} \right){\text{d}}x^{/}$$

where\(\lambda_{n} \tan (\lambda_{n} a) = H, \, n \, = \, 1,2,3, \ldots\)

The eigenvalues ‘\(\lambda_{n}\)’ are the roots of the transcendental equation above.

Step 3 The equation at step 2 can be rewritten as,

$$\psi (x,t) = \int\limits_{{x^{/} = 0}}^{a} {\left[ {\sum\limits_{n = 1}^{\infty } {\frac{{2\left( {\lambda_{\text{n}}^{2} + H^{2} } \right)}}{{a\left( {\lambda_{\text{n}}^{2} + H^{2} } \right) + H}}} *\cos \left( {\lambda_{\text{n}} \left( {a - x} \right)} \right)*\cos \left( {\lambda_{\text{n}} \left( {a - x^{/} } \right)} \right)*e^{{ - \lambda_{\text{n}}^{2} \alpha (t)}} } \right]} \left( {g(x^{/} ) - T_{\text{amb}} } \right){\text{d}}x^{/}$$

Step 4 From the fundamentals of Green’s function [33] (Chapter 6), the standard expression for the solution to problem at step 1, having homogenous differential equation and boundary conditions with a non-homogenous initial condition, is generalised as,

$$\psi (x,t) = \int\limits_{{x^{/} = 0}}^{a} {G\left( {x,t\left| {\left. {x^{/} ,\tau } \right)_{\tau = 0} F} \right.} \right.} (x^{/} ){\text{d}}x^{/}$$

where ‘G’ is the Green’s function and ‘F’ is the initial condition.

Step 5 Comparing equation at step 4 and equation at step 3, appropriate Green’s function is given by,

$$G\left( {x,t\left| {\left. {x^{/} ,\tau } \right)} \right.} \right. = \sum\limits_{n = 1}^{\infty } {\frac{{2\left( {\lambda_{\text{n}}^{2} + H^{2} } \right)}}{{a\left( {\lambda_{\text{n}}^{2} + H^{2} } \right) + H}}} *\cos \left( {\lambda_{\text{n}} \left( {a - x} \right)} \right)*\cos \left( {\lambda_{\text{n}} \left( {a - x^{/} } \right)} \right)*e^{{ - \lambda_{\text{n}}^{2} \alpha (\text{t} - \tau )}}$$

In this step, as a standard procedure, \(t\) is to be replaced by \(t - \tau\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, R.K., Madav, V. & Hindasageri, V. Analytical solution to transient inverse heat conduction problem using Green’s function. J Therm Anal Calorim 141, 2391–2404 (2020). https://doi.org/10.1007/s10973-020-09803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09803-8

Keywords

Navigation