Skip to main content
Log in

Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the variation of thermophysical properties such as the thermal conductivity, thermal energy storage capacity, viscosity, and phase change temperature of the novel ternary eutectic phase change material (PCM) with respect to multi-walled carbon nanotubes (MWCNTs) concentration are investigated. The novel ternary eutectic PCM was formed by the permutation of oleic acid, isopropyl palmitate, butyl stearate in a eutectic mole fraction of 0.44–0.33–0.23. The heat transfer analysis of the materials encapsulated in spherical ball was experimentally investigated. The results concluded that the ternary eutectic PCM with 0.10 mass percentage of MWCNT enhances the heat transfer rate by 34.45% with respect to the pure PCM. Furthermore, the thermal conductivity of the MWCNT dispersed ternary eutectic PCM shows an increasing trend and reaches the maximum enhancement of 67.28% for 0.10 mass percentage of MWCNT concentration. The crystallinity decrement of the composite PCM was increased linearly from 0.19 to 3.2% for the increasing MWCNT concentration along with the convergence of melting and solidification enthalpy at the maximum dispersion of MWCNT concentration. New correlations governing the variation of thermal conductivity, viscosity and thermal expandability of the ternary eutectic PCM with respect to MWCNT concentrations have also been developed and presented in this study. The novel ternary eutectic PCM with 0.10 mass percentage of MWCNT with good thermal reliability after 500 thermal cycles and compatibility with the spherical encapsulated high-density polyethylene ball could be an eminent candidate for low-temperature cold storage applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

X :

Mole fraction

Y :

Mass percentage of MWCNT

T :

Temperature (°C)

R :

Universal gas constant = 8.314 (J mol−1 K−1)

fus h :

Molar enthalpy of fusion (J mol−1)

T fus :

Melting temperature of pure components (°C)

T m :

Phase change temperature of ternary eutectic PCM (°C)

X OA :

Mole fraction of oleic acid

X IP :

Mole fraction of isopropyl palmitate

X BS :

Mole fraction of butyl stearate

H OA :

Latent heat of oleic acid (kJ kg−1)

H IP :

Latent heat of isopropyl palmitate (kJ kg−1)

H BS :

Latent heat of butyl stearate (kJ kg−1)

T OA :

Phase change temperature of oleic acid (°C)

T IP :

Phase change temperature of isopropyl palmitate (°C)

T BS :

Phase change temperature of butyl stearate (°C)

T W :

Temperature of working fluid (°C)

n :

Number of independent parameters

B m :

Mass percentage of ternary eutectic PCM over the MWCNT

∆H composite :

Latent heat of composite PCM (kJ kg−1)

∆H pure PCM :

Latent heat of pure ternary eutectic PCM (kJ kg−1)

H F :

Freezing enthalpy of pure ternary eutectic PCM (kJ kg−1)

H m :

Melting enthalpy of pure ternary eutectic PCM (kJ kg−1)

C p :

Specific heat capacity of the pure and composite ternary eutectic PCM (kJ kg−1K−1)

L :

Latent heat capacity of the pure and composite ternary eutectic PCM (kJ kg−1)

R :

Inner radius of the spherical high-density polyethylene ball (m)

t :

Time (s)

F c :

Crystallinity of the composite PCM

Nu:

Nusselt number

Ra:

Raleigh number

Ste:

Stefan number

Fo:

Fourier number

α :

Eutectic mole fraction point of OA–IP

β :

Eutectic mole fraction point of OA–IP

γ :

Eutectic mole fraction point of BS–OA

η :

Heat loss efficiency of ternary eutectic PCM

ω R :

Total uncertainty

ω xi :

Uncertainty of variables

\(\alpha_{\text{te}}\) :

Thermal expansion coefficient of PCM (°C−1)

Γ :

Liquid fraction of the PCM

Λ :

Thermal conductivity (W m−1 K−1)

ρ :

Density of the pure and composite ternary eutectic PCM (Kg m−3)

ν :

Kinematic viscosity (cSt)

OA:

Oleic acid

IP:

Isopropyl palmitate

BS:

Butyl stearate

MWCNT:

Multi-walled carbon nanotubes

PCM:

Phase change materials

DSC:

Differential scanning calorimeter

HTF:

Heat transfer fluid

HDPE:

High-density polyethylene

FESEM:

Field emission scanning electron microscopy

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared spectrometer

TG/DTG:

Thermogravimetric/derivative thermogravimetric

References

  1. World Energy Outlook. International Energy Agency. 2017. https://www.iea.org/news/a-world-in-transformation-world-energy-outlook-2017.

  2. Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A. Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev. 2012;16:2394–433.

    Article  CAS  Google Scholar 

  3. Cunha JPD, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials—a review. Appl Energy. 2016;177:227–38.

    Article  Google Scholar 

  4. Qian T, Li J, Feng W, Nian H. Enhanced thermal conductivity of form-stable phase change composite with single-walled carbon nanotubes for thermal energy storage. Sci Rep. 2017;7(44710):1–10.

    Google Scholar 

  5. Guo S, Liu Q, Zhao J, Jin G, Wang X, Lang Z, He W, Gong Z. Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes. Appl Energy. 2017;205:703–9.

    Article  CAS  Google Scholar 

  6. Karaipekli A, Bicer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.

    Article  CAS  Google Scholar 

  7. Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S. Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy. 2014;115:320–30.

    Article  CAS  Google Scholar 

  8. Dhandayuthabani M, Jegadheeswaran S, Vijayan V, Antony AG. Investigation of latent heat storage system using graphite micro particle enhancement. J Therm Anal Calorim. 2019;139:2181–6.

    Article  Google Scholar 

  9. Selvaraj V, Morri B, Nair LM, Krishnan H. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019;137:1527–36.

    Article  CAS  Google Scholar 

  10. Jeyaseelan TR, Azhagesan N, Pethurajan V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles. J Therm Anal Calorim. 2019;136:235–42.

    Article  Google Scholar 

  11. Hussain SI, Dinesh R, Roseline AA, Dhivya S, Kalaiselvam S. Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017;143:17–24.

    Article  Google Scholar 

  12. Ranjbar S, Masoumi H, Khoshkhoo RH, Mirfendereski M. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09005-x.

    Article  Google Scholar 

  13. Li M, Chen Q, Yang C. The effect of the geometry and content of the modified carbon nanotubes on the thermal properties of the composite phase-change materials. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09177-6.

    Article  Google Scholar 

  14. Kazemi M, Kianifar A, Niazmand H. Nanoparticle loading effect on the performance of the paraffin thermal energy storage material for building applications. J Therm Anal Calorim. 2020;139:2181–6.

    Article  Google Scholar 

  15. Zhang Z, Yuan Y, Alelyani S, Cao X, Phelan PE. Thermophysical properties enhancement of ternary carbonates with carbon materials for high-temperature thermal energy storage. Sol Energy. 2017;155:661–9.

    Article  CAS  Google Scholar 

  16. Tian H, Du L, Wei X, Deng S, Wang W, Ding J. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy. 2017;204:525–30.

    Article  CAS  Google Scholar 

  17. Zhang N, Yuan Y, Yuan Y, Cao X, Yang X. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy. 2014;110:64–70.

    Article  CAS  Google Scholar 

  18. Motahar S, Alemrajabi AA, Khodabandeh R. Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transf. 2016;52:1621–3.

    Article  CAS  Google Scholar 

  19. Xu B, Zhang C, Chen C, Zhou J, Lu C, Ni Z. One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance. J Therm Anal Calorim. 2018;133:1417–28.

    Article  CAS  Google Scholar 

  20. Ma L, Guo C, Ou R, Wang Q, Li L. Synthesis and characterization of the n-butyl palmitate as an organic phase change material. J Therm Anal Calorim. 2018;136:2033–9.

    Article  Google Scholar 

  21. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  22. Keshteli AN, Sheikholeslami M. Effects of wavy wall and Y-shaped fins on solidification of PCM with dispersion of Al2O3 nanoparticle. J Therm Anal Calorim. 2020;140:381–96.

    Article  CAS  Google Scholar 

  23. Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time-dependent heat transfer simulation for NEPCM solidification inside a channel. J Therm Anal Calorim. 2019;138:721–6.

    Article  CAS  Google Scholar 

  24. Hussain SI, Roseline AA, Kalaiselvam S. Enhancement of thermal conductivity and thermal stability of capric-lauric acid eutectic phase change material using carbonaceous materials. Mater Res Express. 2019;6(11):115605.

    Article  CAS  Google Scholar 

  25. Zhao P, Yue Q, He H, Gao B, Wang Y, Li Q. Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions. Appl Energy. 2014;115:483–90.

    Article  CAS  Google Scholar 

  26. Schultz RR, Cole R. Uncertainty analysis in boiling nucleation. AIChE Symp Sr. 1979;75(189):32–8.

    CAS  Google Scholar 

  27. Hussain SI, Kalaiselvam S. Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage. J Therm Anal Calorim. 2020;140:133–47.

    Article  CAS  Google Scholar 

  28. Ma Y, Chu X, Tang G, Yao Y. Synthesis and thermal properties of acrylate-based polymer shell microcapsules with binary core as phase change materials. Mater Lett. 2013;91:133–5.

    Article  CAS  Google Scholar 

  29. Herbinger F, Bhouri M, Groulx D. Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study. Heat Mass Transf. 2018;54:2433–42.

    Article  CAS  Google Scholar 

  30. Ehms JHN, Oliveski RDC, Rocha LAO, Biserni C. Theoretical and numerical analysis on phase change materials (PCM): a case study of the solidification process of erythritol in spheres. Int J Heat Mass Transf. 2018;119:523–32.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge DST, New Delhi for providing financial support to carry out this research work under DST-TDT scheme (DST-TDT File No. DST/TDT/LCCT-03/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalaiselvam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, R., Hussain, S.I., Roseline, A.A. et al. Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems. J Therm Anal Calorim 145, 2935–2949 (2021). https://doi.org/10.1007/s10973-020-09726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09726-4

Keywords

Navigation