Skip to main content
Log in

Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present study, carbon-based nanomaterials including multiwalled carbon nanotubes (MWCNTs) and vapor-grown carbon nanofibers (CNFs) were dispersed in n-octadecane as a phase change material (PCM) at various mass fractions of 0.5, 1, 2 and 5 wt% by the two-step method. The transient plane source technique was used to measure thermal conductivity of samples at various temperatures in solid (5–25 °C) and liquid (30–55 °C) phases. The experimental results showed that thermal conductivity of the composites increases with increasing the loading of the MWCNTs and CNFs. A maximum thermal conductivity enhancement of 36 % at 5 wt% MWCNTs and 5 °C as well as 50 % at 2 wt% and 55 °C were experimentally obtained for n-octadecane/MWCNTs samples. Dispersing CNFs into n-octadecane raised the thermal conductivity up to 18 % at 5 wt% and 10 °C and 21 % at 5 wt% and 55 °C. However, the average enhancement of 19 and 21 % for solid and liquid phases of MWCNTs composite as well as 33 and 46 % for solid and liquid phase of CNFs promised a better heat transfer characteristics of MWCNTs in n-octadecane. A comparison between results of the present work and available literature revealed a satisfactory enhancement of thermal conductivity. For the investigated n-octadecane/MWCNTs and n-octadecane/CNFs composites, a new correlation was proposed for predicting the thermal conductivity as a function of temperature and nanomaterials loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM: an up to date introduction into basics and applications. Springer, Berlin

    Google Scholar 

  2. Fan L, Khodadadi JM (2011) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15:24–46

    Article  Google Scholar 

  3. Ogoh W, Groulx D (2012) Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study. Heat Mass Transf 48(10):1825–1835

    Article  Google Scholar 

  4. Yang L, Peng H, Dong H (2014) Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit. Heat Mass Transf. doi:10.1007/s00231-014-1400-7

    Google Scholar 

  5. Kamkari B, Shokouhmand H (2014) Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int J Heat Mass Tranf 78:839–851

    Article  Google Scholar 

  6. Mesalhy O, Lafdi K, Elgafi A, Bowman K (2005) Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manage 46:847–867

    Article  Google Scholar 

  7. Siahpush A, O’Brien J, Crepeau J (2008) Phase change heat transfer enhancement using copper porous foam. J Heat Transf 130:1–11

    Article  Google Scholar 

  8. Sari A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27:1271–1277

    Article  Google Scholar 

  9. Ettouney HM, Alatiqi I, Al-Sahali M, Al-Ali SA (2004) Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew Energy 29:841–860

    Article  Google Scholar 

  10. Wang X, Li Y (2014) Experimental analysis for the transient temperature profiles of a fiber-enhanced polyalcohol binary system. Heat Mass Transf. doi:10.1007/s00231-014-1453-7

    Google Scholar 

  11. Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T (2013) Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng 61:825–828

    Article  Google Scholar 

  12. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L (2010) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101:385–389

    Article  Google Scholar 

  13. Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf 48:965–978

    Article  Google Scholar 

  14. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M (2014) A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity. Int Commun Heat Mass Transf 56:114–120

    Article  Google Scholar 

  15. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M (2014) Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int Commun Heat Mass Transf 59:68–74

    Article  Google Scholar 

  16. Yu S, Jeong SG, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energy Mater Sol C 120:549–554

    Article  Google Scholar 

  17. Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43:3067–3074

    Article  Google Scholar 

  18. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F (2008) Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim 91:443–446

    Article  Google Scholar 

  19. Wang J, Xie H, Xin Z (2008) Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys 104:113537

    Article  Google Scholar 

  20. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L (2009) Effects of MWNTS on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim 95:507–512

    Article  Google Scholar 

  21. Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42

    Article  Google Scholar 

  22. Wang J, Xie H, Xin Z, Li Y, Chen L (2010) Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy 84:339–344

    Article  Google Scholar 

  23. Wang J, Xie H, Xin Z, Li Y (2010) Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48:3979–3986

    Article  Google Scholar 

  24. Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol C 95:1208–1212

    Article  Google Scholar 

  25. Kumaresan V, Velraj R, Das SK (2012) The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf 48:1345–1355

    Article  Google Scholar 

  26. Yu ZT, Fang X, Fan LW, Wang X, Xiao YQ, Zeng Y, Xu X, Hu YC, Cen KF (2013) Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 53:277–285

    Article  Google Scholar 

  27. Fan LW, Fang Z, Wang Z, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172

    Article  Google Scholar 

  28. Choi DH, Lee J, Hong H, Kang YT (2014) Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int J Refrig 42:112–120

    Article  Google Scholar 

  29. Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804

    Article  Google Scholar 

  30. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. New York, McGraw-Hill

    Google Scholar 

  31. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Motahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motahar, S., Alemrajabi, A.A. & Khodabandeh, R. Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transfer 52, 1621–1631 (2016). https://doi.org/10.1007/s00231-015-1678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1678-0

Keywords

Navigation