Skip to main content
Log in

The effect of the geometry and content of the modified carbon nanotubes on the thermal properties of the composite phase-change materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, ultrasonic dispersion and surface chemical modification were used to prepare the modified multi-walled carbon nanotubes (MWNTs)/paraffin composite phase-change materials (PCMs). The surface modification of MWNTs was developed via coating MWNTs with silica dioxide. The modified MWNTs were marked as SiO2@MWNTs. The phase-change properties, thermal stability and chemical functional groups of the MWNTs/paraffin composite PCMs were measured by differential scanning calorimetry, thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy, respectively. The results indicated that paraffin and MWNTs were compound physically. The diameter and content of MWNTs had influence on the phase-change temperature and the latent heat of the MWNTs/paraffin composite PCMs. The smaller the diameter or larger content of the SiO2@MWNTs, the greater the influence was. The reduction degree of PCM1(the diameter of the SiO2@MWNTs is 20–30 nm) in latent heat is about 4.5 times of that of PCM3(the diameter of the SiO2@MWNTs is larger than 50 nm). The thermal stability and the thermal conductivity of the composite PCMs were improved with the addition of the SiO2@MWNTs. When the content of SiO2@MWNTs is 5 mass%, the thermal conductivity of the paraffin PCMs is 0.383 W m−1 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B. 2004;108(52):19912–6.

    Article  CAS  Google Scholar 

  2. Miansari M, Nazari M, Toghraie D, et al. Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs). J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08573-2.

    Article  Google Scholar 

  3. Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011;15(1):24–46.

    Article  CAS  Google Scholar 

  4. Fok S, Shen W, Tan F. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci. 2010;49(1):109–17.

    Article  CAS  Google Scholar 

  5. Nurmawati MH, Siow KS, Rasiah IJ. Thermal performance of a phase change material on a nickel-plated surface. Thin Solid Films. 2004;462(1):481–6.

    Article  Google Scholar 

  6. Martone A, Formicola C, Giordano M, et al. Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol. 2010;70(7):1154–60.

    Article  CAS  Google Scholar 

  7. Hou P, Mao J, et al. Improvement in thermodynamic characteristics of sodium acetate trihydrate composite phase change material with expanded graphite. J Therm Anal Calorim. 2019;137(4):1295–306.

    Article  CAS  Google Scholar 

  8. Wei S, Duan Z, et al. Preparation and thermal performances of microencapsulated phase change materials with a nano-Al2O3-doped shell. J Therm Anal Calorim. 2019;138(1):233–41.

    Article  CAS  Google Scholar 

  9. Jamali M, Toghraie D. Investigation of heat transfer characteristics in the developing and the developed flow of nanofluid inside a tube with different entrances in the transition regime. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08380-9.

    Article  Google Scholar 

  10. Bayat M, Faridzadeh MR, Toghraie D. Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Therm Sci Eng Prog. 2018;5:50–9.

    Article  Google Scholar 

  11. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613–6.

    Article  CAS  Google Scholar 

  12. Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502-1–4.

    Article  Google Scholar 

  13. Carlborg CF, Shiomi J, Maruyama S. Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys Rev B. 2008;78:205406-1–220546-8.

    Article  Google Scholar 

  14. Gonnet P, Liang Z, Choi ES, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys. 2006;6:119–22.

    Article  Google Scholar 

  15. Shaikh S, Lafdi K, Hallinan K. Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys. 2008;103(9):094302-1–6.

    Article  Google Scholar 

  16. Islam MF, Rojas E, Bergey DM, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003;3(2):269–73.

    Article  CAS  Google Scholar 

  17. Luo YF, Zhao Y, Cai JZ, et al. Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Des. 2012;33:405–12.

    Article  Google Scholar 

  18. Hou J, Du W, Meng F, et al. Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J Colloid Interface Sci. 2017;512(15):750–7.

    PubMed  Google Scholar 

  19. Ma J, Nan X, Liu J, et al. Dispersion of pristine and polyaniline functionalized carbon nanotubes in designed solvent mixtures by Hansen solubility parameters. Mater Today Commun. 2018;14:99–105.

    Article  CAS  Google Scholar 

  20. Oueiny C, Berlioz S, Patout L, et al. Aqueous dispersion of multiwall carbon nanotubes with phosphonic acid derivatives. Colloids Surf A. 2016;493:41–51.

    Article  CAS  Google Scholar 

  21. Ji P, Sun H, Zhong Y, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes. Chem Eng Sci. 2011;81:140–5.

    Article  Google Scholar 

  22. Li TX, Lee JK, Wang RZ, et al. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy. 2013;55:752–61.

    Article  CAS  Google Scholar 

  23. Harish S, Ishikawa K, Chiashi S, et al. Anomalous thermal conduction characteristics of phase change composites with single-walled carbon nanotube inclusions. J Phys Chem C. 2013;117:15409–13.

    Article  CAS  Google Scholar 

  24. Tang Y, Alva G, Huang X, et al. Thermal properties and morphologies of MA–SA eutectics/CNTs as composite PCMs in thermal energy storage. Energy Build. 2016;127:603–10.

    Article  Google Scholar 

  25. Atinafu DG, Dong W, Huang X, et al. Introduction of organic–organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl Energy. 2018;211:1203–15.

    Article  CAS  Google Scholar 

  26. Li Y, Li J, Deng Y, et al. Preparation of paraffin/porous TiO2, foams with enhanced thermal conductivity as PCM, by covering the TiO2, surface with a carbon layer. Appl Energy. 2016;171:37–45.

    Article  CAS  Google Scholar 

  27. Mir S, Akbari OA, Toghraie D, et al. A comprehensive study of two-phase flow and heat transfer of water/ag nanofluid in an elliptical curved minichannel. Chin J Chem Eng. 2019. https://doi.org/10.1016/j.cjche.2019.07.007.

    Article  Google Scholar 

  28. Lecompte T, Le Bideau P, Glouannec P, et al. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy Build. 2015;94:52–60.

    Article  Google Scholar 

  29. Quanguo Huang, Wenbing Yang, Kai Zhang. The preparation and characterization of polystyrene/paraffin phase change microcapsule. Funct Mater. 2014;45(13):13131–4.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51178102) which is financed by the National Natural Science Fund Committee. Financial support from Key R&D Program of Hunan Province (2018WK2111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, Q. & Yang, C. The effect of the geometry and content of the modified carbon nanotubes on the thermal properties of the composite phase-change materials. J Therm Anal Calorim 143, 103–112 (2021). https://doi.org/10.1007/s10973-019-09177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09177-6

Keywords

Navigation