Skip to main content
Log in

Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present study, the efficient parameters on thermal energy storage in a double-wall tank with phase-change materials have been investigated. At first, the effect of using fins in distribution of phase-change materials has been studied. Inside the tank where the inlet-heated water is there, the inlet temperature and Reynolds number have been investigated. Also, on tank walls where the phase-change materials are placed, the effect of using of fins and the type of phase-change materials has been investigated. By mounting fins on areas with phase-change materials, the melting time reduces significantly. Therefore, after mounting fins, the melting of phase-change materials has been reduced from 60 to 80% in approximately 8 h. In water zone, by increasing inlet temperature from 340 to 360 K, the melting time of phase-change material reduces significantly, in a way that, after approximately 8 h, the amount of melted materials changed from 67 to 87%; however, the change in Reynolds number does not have any considerable influence. In final section, the effect of thermophysical properties of phase-change materials on melting process has been studied. The obtained results reveal that using materials with lower specific heat and melting temperature causes the reduction of melting time, and hence, for melting 90% of phase-change materials with wax, 14 h is needed, while, by using SavEHS34, these materials change their phase in 5.5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    Article  CAS  Google Scholar 

  2. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  3. Hemmat Esfe M, Hassani Ahangar MR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.

    Article  CAS  Google Scholar 

  4. Akbari OA, Hassanzadeh Afrouzi H, Marzban A, Toghraie D, Malekzade HA, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1119–22.

    Article  Google Scholar 

  5. Toghraie D, Davood Abdollah MM, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nano-fluid. J Therm Anal Calorim. 2018;131(2):1757–66.

    Article  CAS  Google Scholar 

  6. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  7. Arabpour A,  Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  8. Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E. 2018;96:73–84.

    Google Scholar 

  9. Ravikumar M, Srinivasan PSS. Phase change material as a thermal energy storage material for cooling of building. J Theor Appl Inf Technol. 2008;2008(1):503–11.

    Google Scholar 

  10. Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11:1146–66.

    Article  Google Scholar 

  11. Labat M, Virgone J, David D, Kuznik F. Experimental assessment of a PCM to air heat exchanger storage system for building ventilation application. Appl Therm Eng. 2014;66:375–82.

    Article  CAS  Google Scholar 

  12. Mosaffa AH, Talati FH, Basirat Tabrizi F, Rosen MA. Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build. 2012;49:356–61.

    Article  Google Scholar 

  13. Dolado P, Lazaro A, Marin JM, Zalba B. Characterization of melting and solidification in a real scale PCM-air heat exchanger: numerical model and experimental validation. Energy Convers Manag. 2011;52:1890–907.

    Article  CAS  Google Scholar 

  14. Wang YH, Yang YT. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink. Energy. 2011;36:5214–24.

    Article  CAS  Google Scholar 

  15. Shalaby SM, Bek MA, El-Sebaii AA. Solar dryers with PCM as energy storage medium: a review. Renew Sustain Energy Rev. 2014;33:110–6.

    Article  CAS  Google Scholar 

  16. Guelpa E, Sciacovelli A, Verda V. Entropy generation analysis for the design improvement of a latent heat storage system. Energy. 2013;53:128–38.

    Article  Google Scholar 

  17. Akhilesh R, Balaji C, Narasimhan A. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf. 2005;48:2759–70.

    Article  Google Scholar 

  18. Gharebaghi M, Sezai I. Enhancement of heat transfer in latent heat storage modules with internal fins. Numer Heat Transf. 2008;53:749–65.

    Article  CAS  Google Scholar 

  19. Shatikian V, Ziskind G, Letan R. Numerical investigation of a phase change material-based heat sink with internal fins. Int J Heat Mass Transf. 2005;48:3689–706.

    Article  CAS  Google Scholar 

  20. Shatikian V, Ziskind G, Letan R. Numerical investigation of a phase change material-based heat sink with internal fins: constant heat flux. Int J Heat Mass Transf. 2008;51(1488):93.

    Google Scholar 

  21. Hosseinizadeh SF, Rabienataj Darzi AA, Tan FL. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012;51:77–83.

    Article  CAS  Google Scholar 

  22. Alipour H, Karimipour A, Safaei MR, Toghraie D, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E. 2017;88:60–76.

    Article  CAS  Google Scholar 

  23. Manca O, Nardini S, Ricci D. A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng. 2012;37:280–92.

    Article  CAS  Google Scholar 

  24. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8(4):1–25.

    Article  CAS  Google Scholar 

  25. Assis E, Ziskind G, Letan R. Numerical and experimental study of solidification in a spherical shell. J Heat Transf. 2009;31(1):24502–7.

    Article  Google Scholar 

  26. Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50:1790–804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Miansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miansari, M., Nazari, M., Toghraie, D. et al. Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs). J Therm Anal Calorim 139, 2283–2294 (2020). https://doi.org/10.1007/s10973-019-08573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08573-2

Keywords

Navigation