Skip to main content
Log in

Synthesis, characterization and catalytic behavior of MFe2O4 (M = Ni, Zn and Co) nanoparticles on the thermal decomposition of TKX-50

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bimetallic iron oxides (NiFe2O4, ZnFe2O4 and CoFe2O4) were prepared via the facile solvothermal method and characterized using SEM, TEM, XRD, FTIR, XPS and BET instruments. The catalytic behavior of the bimetallic iron oxides on the thermal decomposition of 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) was studied using DSC and TG-DTG methods. Besides, the corresponding kinetic parameters of TKX-50 thermal decomposition were calculated by multi-kinetics methods including traditional, iso-conversional and iteration methods. The thermal decomposition peak temperature (Tp) and the activation energy (Ea) reduced obviously after the addition of bimetallic iron oxides. Among different bimetallic iron oxides, the ZnFe2O4 has the best catalytic activity for TKX-50 thermal decomposition. The high thermal decomposition peak temperature (THDP) and average apparent activation energy (Ea) of TKX-50 were decreased by 47.0 °C and 34.34 kJ mol−1 in the presence of ZnFe2O4 sample. The excellent catalytic activity of ZnFe2O4 for thermal decomposition of TKX-50 makes it a promising combustion catalyst of insensitive solid propellants containing TKX-50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tunnell R, Dale R, King I, Tod D. Using thermal methods to understand the interactions between a rocket propellant and igniter material. J Therm Anal Calorim. 2018;131(1):379–95.

    CAS  Google Scholar 

  2. Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2017;53(1):100–23.

    Google Scholar 

  3. Yan Q-L, Yang Z, Zhang X, Lyu J, He W, Huang S, Liu P, Zhang C, Zhang Q, He G, Nie F. High density assembling of energetic molecules under constraint of defected 2D materials. J Mater Chem A. 2019;7:17806–14.

    CAS  Google Scholar 

  4. Liu L, Li J, Zhang L, Tian S. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant. J Hazard Mater. 2018;342:477–81.

    CAS  PubMed  Google Scholar 

  5. Li Y, Huang H, Shi Y, Yang J, Pan R, Lin X. Potassium nitraminofurazan derivatives: potential green primary explosives with high energy and comparable low friction sensitivities. Chem Eur J. 2017;23(30):7353–60.

    CAS  PubMed  Google Scholar 

  6. Wu Q, Zhu W, Xiao H. A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3N-oxide. Journal of Materials Chemistry A. 2017;2(32):13006.

    Google Scholar 

  7. Trache D, Tarchoun AF, Chelouche S, Khimeche K. New insights on the compatibility of nitrocellulose with aniline-based compounds. Propellants Explos Pyrotech. 2019;44:970–9.

    CAS  Google Scholar 

  8. Zhang X-Q, Yuan J-N, Selvaraj G, Ji G-F, Chen X-R, Wei D-Q. Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Phys Chem Chem Phys. 2018;20(25):17253–61.

    CAS  PubMed  Google Scholar 

  9. Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenko AF, Nechaev MS, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    CAS  Google Scholar 

  10. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A. Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta. 2019. https://doi.org/10.1016/j.tca.2019.01.015.

    Article  Google Scholar 

  11. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132(3):1601–15.

    CAS  Google Scholar 

  12. Trache D, Tarchoun AF. Analytical methods for stability assessment of nitrate esters-based propellants. Crit Rev Anal Chem. 2019;49:1–24.

    Google Scholar 

  13. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96.

    CAS  Google Scholar 

  14. Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D. The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim. 2013;116(1):279–86.

    Google Scholar 

  15. Trache D. Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohydr Polym. 2016;151:535–7.

    CAS  PubMed  Google Scholar 

  16. Tarchoun AF, Trache D, Klapötke TM, Chelouche S, Derradji M, Bessa W, Mezroua A. oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromol Chem Phys. 2019. https://doi.org/10.1002/macp.201900358.

    Article  Google Scholar 

  17. Muravyev NV, Monogarov KA, Asachenko AF, Nechaev MS, Ananyev IV, Fomenkov IV, Pivkina AN. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Phys Chem Chem Phys. 2017;19(1):436–49.

    CAS  Google Scholar 

  18. Chen S-W, He W, Luo C-J, An T, Chen J, Yang Y, Liu P-J, Yan Q-L. Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J Hazard Mater. 2019;368:404–11.

    CAS  PubMed  Google Scholar 

  19. Zhang J, Xue B, Rao G, Chen L, Chen W. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2017;133(1):727–35.

    Google Scholar 

  20. Pourmortazavi SM, Mirzajani V, Farhadi K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. 2018;3:1–12.

    Google Scholar 

  21. Zhang J-Q, Liu R, Ji T-Z, Ren J-C, Guo Q, Wang B-Z, Hu R-Z. Thermal behavior and thermal safety of 6b-nitrohexahydro-2H-1,3,5-trioxacyclopenta[cd]-pentalene-2,4,6-triyltrinitrate. RSC Adv. 2017;7(49):30747–54.

    CAS  Google Scholar 

  22. Chen X, Zhang C, Bai Y, Guo Z, Yao Y, Song J, Ma H. Synthesis, crystal structure and thermal properties of an unsymmetrical 1,2,4,5-tetrazine energetic derivative. Acta Crystallogr Sect C Struct Chem. 2018;74(6):666–72.

    CAS  Google Scholar 

  23. Zhang M, Zhao F, Yang Y, Zhang J, Li N, Gao H. Effect of rGO–Fe2O3 nanocomposites fabricated in different solvents on the thermal decomposition properties of ammonium perchlorate. CrystEngComm. 2018;20:7010–9.

    CAS  Google Scholar 

  24. Zhang M, Zhao F, Yang Y, Li H, Zhang J, Ma W, Gao H, Li N. Shape-dependent catalytic activity of nano-Fe2O3 on the thermal decomposition of TKX-50. Acta Phys Chim Sin. 2019;35(X):0001–9.

    Google Scholar 

  25. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2016;128(1):335–48.

    Google Scholar 

  26. Fu Y, Wang X. Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res. 2011;50(12):7210–8.

    CAS  Google Scholar 

  27. Zong M, Huang Y, Wu H, Zhao Y, Wang Q, Sun X. One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater Lett. 2014;114:52–5.

    CAS  Google Scholar 

  28. Huang S, Xu Y, Xie M, Xu H, He M, Xia J, Li H. Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A Physicochem Eng Asp. 2015;478:71–80.

    CAS  Google Scholar 

  29. Zong M, Huang Y, Ding X, Zhang N, Qu C, Wang Y. One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram Int. 2014;40(5):6821–8.

    CAS  Google Scholar 

  30. Sun L, Shao R, Tang L, Chen Z. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation. J Alloys Compd. 2013;564:55–62.

    CAS  Google Scholar 

  31. Wang J, Chen S, Yao Q, Jin S, Zhao S, Yu Z, Shu Q. Preparation, characterization, thermal evaluation and sensitivities of TKX-50/GO composite. Propellants Explos Pyrotech. 2017;42(9):1104–10.

    CAS  Google Scholar 

  32. Jia J, Liu Y, Huang S, Xu J, Li S, Zhang H, Cao X. Crystal structure transformation and step-by-step thermal decomposition behavior of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. RSC Adv. 2017;7(77):49105–13.

    CAS  Google Scholar 

  33. García Rodenas LA, Blesa MA, Morando PJ. Reactivity of metal oxides: thermal and photochemical dissolution of MO and MFe2O4 (M = Ni Co, Zn). J Solid State Chem. 2008;181(9):2350–8.

    Google Scholar 

  34. Chen S, Zhang H, Wu L, Zhao Y, Huang C, Ge M, Liu Z. Controllable synthesis of supported Cu–M (M = Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. J Mater Chem. 2012;22(18):9117.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant Nos. 21173163 and 21503163) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhao, F., Yang, Y. et al. Synthesis, characterization and catalytic behavior of MFe2O4 (M = Ni, Zn and Co) nanoparticles on the thermal decomposition of TKX-50. J Therm Anal Calorim 141, 1413–1423 (2020). https://doi.org/10.1007/s10973-019-09102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09102-x

Keywords

Navigation