Skip to main content

Advertisement

Log in

Synergistic Effect of Bimetallic Ni-Based Catalysts Derived from Hydrotalcite on Stability and Coke Resistance for Dry Reforming of Methane

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Bimetallic Ni–Al and Ni–Fe nanoparticles catalysts derived from hydrotalcite were synthesized by co-precipitation method and applied in dry reforming of methane. The samples were calcined at 800 °C and the crystalline phases were assessed by X-ray diffraction coupled with Rietveld refinement. Other analyzes were carried out to study their textural and structural properties including, Thermogravimetric Analysis (TG), Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Brunauere-Emmette-Teller (BET), Scanning Electron Microscopy and Energy Dispersive-X-ray (SEM–EDX), Temperature Programmed Reduction (TPR), Transmission Electron Microscopy (TEM) and EDS mapping. The XRD Analyses confirmed the formation of the precursor’s layered double hydroxide structure, the formation of the γ-NiFe alloy confirmed by TEM-EDS Analysis. The specific surface area of the two samples increases after calcination, attributed to the destruction of the double-layered structure at high temperature, which produced cavities or crates resulting in larger surface areas. These catalysts were evaluated in CO2 reforming of methane under continuous flow with CH4/CO2 ratio equal to 1, at atmospheric pressure and a temperature range between 400 and 700 °C. At 700 °C, the NiAlHT catalyst displayed the best CH4 conversion (87.5%) and CO2 conversion (91.4%) compared to the conversion of CH4 (79.2%) and CO2 (84.1) for NiFeHT catalyst within 10 h stability test. The iron addition to the nickel showed improved resistance to coke deposition while a slight decrease in methane conversion was observed. The possible formation of γ-NiFe alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data available within the article and its supplementary materials.

References

  1. Atsbha TA, Yoon T, Seongho P, Lee CJ (2021) A review on the catalytic conversion of CO2 using H2 for synthesis of CO methanol and hydrocarbons. J CO2 Utiliz 44:101413–101435. https://doi.org/10.1016/j.jcou.2020.101413

    Article  CAS  Google Scholar 

  2. Gao X, Ge Z, Zhu G, Wang Z, Ashok J, Kawi S (2021) Anti-coking and anti-sintering Ni/Al2O3 catalysts in the dry reforming of methane recent progress and prospects. Catalysts 11(8):1003. https://doi.org/10.3390/catal11081003

    Article  CAS  Google Scholar 

  3. Le Saché E, Reina TR (2022) Analysis of Dry Reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies. Prog Energy Combust Sci 8:100970–101040. https://doi.org/10.1016/j.pecs.2021.100970

    Article  Google Scholar 

  4. Djebarri B, Touahra F, Aider N, Bali F, Sehailia M, Chebout R, Bachari K, Halliche D (2020) Enhanced long-term stability and carbon resistance of Ni/MnxOy-Al2O3 catalyst in near-equilibrium CO2 reforming of methane for syngas production. Bull Chem React Eng Catal 15(2):331–347. https://doi.org/10.9767/bcrec.15.2.6983.331-347

    Article  CAS  Google Scholar 

  5. Gao X, Ge Z, Zhu G, Wang Z, Ashok J, Kawi S (2021) Anti-coking and anti-sintering Ni/Al2O3 catalysts in the dry reforming of methane: recent progress and prospects. Catalysts 11(8):1003. https://doi.org/10.3390/catal11081003

    Article  CAS  Google Scholar 

  6. Touahra F, Chebout R, Lerari D, Halliche D, Bachari K (2019) Role of the nanoparticles of Cu-Co alloy derived from perovskite for enhancing Carbon-Resistant in the dry reforming of methane. Energy 171:465–474. https://doi.org/10.1016/j.energy.2019.01.085

    Article  CAS  Google Scholar 

  7. Gao N, Salisu J, Quan C, Williams P (2021) Modified nickel-based catalysts for improved steam reforming of biomass tar. A critical review. Renew Sustain Energy Rev 145:111023. https://doi.org/10.1016/j.rser.2021.111023

    Article  CAS  Google Scholar 

  8. Sellam D, Ikkour K, Dekkar S, Messaoudi H, Belaid T, Roger AC (2019) CO2 reforming of methane over LaNiO3 perovskite supported catalysts: influence of silica support. Bull Chem React Eng Catal 14(3):568–578. https://doi.org/10.9767/bcrec.14.3.3472.568-578

    Article  CAS  Google Scholar 

  9. Calgaro CO, Rocha AL, Perez-Lopez OW (2020) Deactivation control in CO2 reforming of methane over Ni–Mg–Al catalyst. React Kinet Mech Catal 130(1):159–178. https://doi.org/10.1007/s11144-020-01770-3

    Article  CAS  Google Scholar 

  10. Świrk K, Grams J, Motak M, Da Costa P, Grzybek T (2020) Understanding of tri-reforming of methane over Ni/Mg/Al hydrotalcite-derived catalyst for CO2 utilization from flue gases from natural gas-fired power plants. J CO 2Utiliz 42:101317–101335. https://doi.org/10.1016/j.jcou.2020.101317

    Article  CAS  Google Scholar 

  11. Calgaro CO, Lima DDS, Tonietto R, Perez-Lopez OW (2021) Biogas dry reforming over Ni–Mg–La–Al catalysts: influence of La/Mg ratio. Catal Lett 151(1):267–280. https://doi.org/10.1007/s10562-020-03296-8

    Article  CAS  Google Scholar 

  12. Djebarri B, Gonzalez-Delacruz VM, Halliche D, Bachari K, Saadi A, Caballero A, Holgado JP, Cherifi O (2014) Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. React Kinet Mech Catal 111:259–275. https://doi.org/10.1007/s11144-013-0646-2

    Article  CAS  Google Scholar 

  13. Djebarri B, Aider N, Touahra F, Bali F, Holgado JP, Halliche D (2021) Effect of silicates and carbonates on the structure of nickel-containing hydrotalcite-derived materials. In: Khellaf A (ed) Advances in renewable hydrogen and other sustainable energy carriers. Springer proceedings in energy. Springer, Singapore, pp 443–450. https://doi.org/10.1007/978-981-15-6595-3_57

    Chapter  Google Scholar 

  14. Zambaldi P, Haug L, Penner S, Klötzer B (2022) Dry reforming of methane on NiCu and NiPd model systems: optimization of carbon chemistry. Catalysts 12:311–334. https://doi.org/10.3390/catal12030311

    Article  CAS  Google Scholar 

  15. Touahra F, Sehailia M, Halliche D, Bachari K, Saadi A, Cherifi O (2016) (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: Advocating the role of concurrent carbothermic redox looping in the elimination of coke. Int J Hydrogen Energy 41:21140–21156. https://doi.org/10.1016/j.ijhydene.2016.08.194

    Article  CAS  Google Scholar 

  16. Chatla A, Abu-Rub F, Prakash AV, Ibrahim G, Elbashir NO (2022) Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: synergistic effect of Ni and Zn. Fuel 308:122042. https://doi.org/10.1016/j.fuel.2021.122042

    Article  CAS  Google Scholar 

  17. Duan X, Pan J, Yang X, Wan C, Lin X, Li D, Jiang L (2022) Nickel-cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane. Int J Hydrogen Energy 47:24358–24373. https://doi.org/10.1016/j.ijhydene.2022.05.211

    Article  CAS  Google Scholar 

  18. Aider N, Touahra F, Bali F, Djebarri B, Lerari D, Bachari K, Halliche D (2018) Improvement of catalytic stability and carbon resistance in the process of CO2 reforming of methane by CoAl and CoFe hydrotalcite-derived catalysts. Int J Hydrogen Energy 43:8256–8266. https://doi.org/10.1016/j.ijhydene.2018.03.118

    Article  CAS  Google Scholar 

  19. Aider N, Touahra F, Djebarri B, Bali F, Abdelsadek Z, Halliche D (2021) Application of hydrotalcite for the dry reforming reaction of methane and reduction of greenhouse gases. In: Khellaf A (ed) Advances in renewable hydrogen and other sustainable energy carriers. Springer Proceedings in Energy. Springer, Singapore, pp 299–305. https://doi.org/10.1007/978-981-15-6595-3_39

    Chapter  Google Scholar 

  20. Wan C, Song K, Pan J, Huang M, Luo R, Li D, Jiang L (2020) Ni–Fe/Mg (Al) O alloy catalyst for carbon dioxide reforming of methane: influence of reduction temperature and Ni–Fe alloying on coking. Int J Hydrogen Energy 45:33574–33585. https://doi.org/10.1016/j.ijhydene.2020.09.129

    Article  CAS  Google Scholar 

  21. Touahra F, Sehailia M, Ketir W, Bachari K, Chebout R, Trari M, Cherifi O, Halliche D (2016) Effect of the Ni/Al ratio of hydrotalcite-type catalysts on their performance in the methane dry reforming process. Appl Petrochem Res 6:1–13. https://doi.org/10.1007/s13203-015-0109-y

    Article  CAS  Google Scholar 

  22. LijiSobhana SS, Mehedi R, Malmivirta M, Paturi P, Lastusaari M, Dîrtu MM, Garcia Y, Fardim P (2016) Heteronuclear nanoparticles supported hydrotalcites containing Ni(II) and Fe(III) stable photocatalysts for orange II degradation. Appl Clay Sci 132:641–649. https://doi.org/10.1016/j.clay.2016.08.016

    Article  CAS  Google Scholar 

  23. Qi C, Amphlett JC, Peppley BA (2009) H2 production via the steam reforming of methanol over NiAl-layered double hydroxide derived catalysts. Catal Surv Asia 13:16–21. https://doi.org/10.1007/s10563-009-9063-y

    Article  CAS  Google Scholar 

  24. Braterman PS, Xu ZP, Yarberry F (2004) Layered double hydroxides (LDHs). Handbook Layer Mater 8:373–474

    Google Scholar 

  25. Aider N, Djebarri B, Touahra F, Layeb H, Halliche D (2023) Studies of the solvent-free knoevenagel condensation over commercial NiO compared with NiO drived from hydrotalcites. Bull Chem React Eng Catal 18:186–199. https://doi.org/10.9767/bcrec.17598

    Article  CAS  Google Scholar 

  26. Silva Neto LD, Anchieta CG, Duarte JL, Meili L, Freire JT (2021) Effect of drying on the fabrication of MgAl layered double hydroxides. ACS Omega 6:21819–21829. https://doi.org/10.1021/acsomega.1c03581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  28. Othman MR, Rasid NM, Fernando WJN (2006) Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chem Eng Sci 61:1555–1560. https://doi.org/10.1016/j.ces.2005.09.011

    Article  CAS  Google Scholar 

  29. Zhao X, Xu S, Wang L, Duan X, Zhang F (2010) Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res 3:200–210. https://doi.org/10.1007/s12274-010-1023-3

    Article  CAS  Google Scholar 

  30. Carvalho DC, Ferreira NA, Josue Filho M, Ferreira OP, Soares JM, Oliveira AC (2015) Ni–Fe and Co–Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catal Today 250:155–165. https://doi.org/10.1016/j.cattod.2014.08.010

    Article  CAS  Google Scholar 

  31. Haipeng WU, Wenjing W, Li GUO, Yan FP, Xiufeng XU (2011) Effect of promoter species and precursors on catalytic activity of alkali metal promoted NiAl mixed oxides for N2O decomposition. Journal of Fuel Chemistry and Technology 39:550–555. https://doi.org/10.1016/S1872-5813(11)60034-0

    Article  Google Scholar 

  32. Rudolf C, Dragoi B, Ungureanu A, Chirieac A, Royer S, Nastro A, Dumitriu E (2014) NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal Sci Technol 4:4179–4189. https://doi.org/10.1039/C3CY00611E

    Article  Google Scholar 

  33. Smoláková L, Čapek L, Botková Š, Kovanda F, Bulánek R, Pouzar M (2011) Activity of the Ni–Al Mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane. Top Catal 54:1151–1162. https://doi.org/10.1007/s11244-011-9737-3

    Article  CAS  Google Scholar 

  34. Touahra F, Rabahi A, Chebout R, Boudjemaa A, Lerari D, Sehailia M, Halliche D, Bachari K (2016) Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: an expedient approach to carbon resistance during CO2 reforming of methane. Int J Hydrogene Energy 41:2477–2486. https://doi.org/10.1016/j.ijhydene.2015.12.062

    Article  CAS  Google Scholar 

  35. Munteanu G, Ilieva L, Andreeva D (1997) Kinetic parameters obtained from TPR data for α-Fe2O3 and Au α-FeO3 systems. Thermochim Acta 291:171–177. https://doi.org/10.1016/S0040-6031(96)03097-3

    Article  CAS  Google Scholar 

  36. Paldey S, Gedevanishvili S, Zhang W, Rasouli F (2005) Evaluation of spinel based pigment system as CO oxidation catalyst. Appl Catal B 56:241–250. https://doi.org/10.1016/j.apcatb.2004.09.013

    Article  CAS  Google Scholar 

  37. Jozwiak W, Kaczmarek E, Maniecki T, Ignaczak W, Maniukiewicz W (2007) Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A 326:17–27. https://doi.org/10.1016/j.apcata.2007.03.021

    Article  CAS  Google Scholar 

  38. Aoudjit F, Touahra F, Aoudjit L, Cherifi O, Halliche D (2020) Efficient solar heterogeneous photocatalytic degradation of metronidazole using heterojunction semiconductors hybrid nanocomposite, layered double hydroxides. Water Sci Technol 82:2837–2846. https://doi.org/10.2166/wst.2020.519

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Ramirez J, Mul G, Kapteijn F, Moulijn J (2011) A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. J Mater Chem 11:2529–2536. https://doi.org/10.1039/B104989P

    Article  Google Scholar 

  40. Subhashini J, Ferdinand AC, Sagayaraj R (2022) Structural, spectroscopy and magnetic properties of copper doped nickel ferrite by the co-precipitation method. Chem Afr 5:1387–1396. https://doi.org/10.1007/s42250-022-00438-w

    Article  CAS  Google Scholar 

  41. Masmoudi-Soussi A, Hammas-Nasri I, Horchani-Naifer K, Férid M (2019) Study of rare earths leaching after hydrothermal conversion of phosphogypsum. Chemistry Africa 2:415–422. https://doi.org/10.1007/s42250-019-00048-z

    Article  CAS  Google Scholar 

  42. Theofanidis SA, Batchu R, Galvita VV, Poelman H, Marin GB (2016) Carbon gasification from Fe–Ni catalysts after methane dry reforming. Appl Catal B 185:42–55. https://doi.org/10.1016/j.apcatb.2015.12.006

    Article  CAS  Google Scholar 

  43. Han JW, Park JS, Choi MS, Lee H (2017) Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl Catal B Environ 203:625–632. https://doi.org/10.1016/j.apcatb.2016.10.069

    Article  CAS  Google Scholar 

  44. Shang Z, Li S, Li L, Liu G, Liang X (2017) Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl Catal B 201:302–309. https://doi.org/10.1016/j.apcatb.2016.08.019

    Article  CAS  Google Scholar 

  45. Motomura A, Nakaya Y, Sampson C, Higo T, Torimoto M, Tsuneki H, Furukawa S, Sekine Y (2022) Synergistic effects of Ni–Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field. RSC Adv 12(44):28359–28363. https://doi.org/10.1039/D2RA05946K

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang T, Liu Z, Zhu YA, Liu Z, Sui Z, Zhu K, Zhou X (2020) Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics. Appl Catal B Environ 264:118497. https://doi.org/10.1016/j.apcatb.2019.118497

    Article  CAS  Google Scholar 

  47. Theofanidis SA, Galvita VV, Poelman H, Marin GB (2015) Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal 5:3028–3039. https://doi.org/10.1021/acscatal.5b00357

    Article  CAS  Google Scholar 

  48. Benrabaa R, Boukhlouf H, Löfberg A, Rubbens A, Vannier RN, Bordes-Richard E, Barama A (2012) Nickel ferrite spinel as catalyst precursorin the dry reforming of methane: synthesis, characterization and catalytic properties. J Nat Gas Chem 21:595–604. https://doi.org/10.1016/S1003-9953(11)60408-8

    Article  CAS  Google Scholar 

  49. Muraza O, Galadima A (2015) A review on coke management during dry reforming of methane. Int J Energy Res 39:1196–1216. https://doi.org/10.1002/er.3295

    Article  Google Scholar 

  50. Rahbar Shamskar F, Rezaei M, Meshkani F (2017) The influence of Ni loading on the activity and coke formation of ultrasound-assisted co-precipitated Ni–Al2O3 nanocatalyst in dry reforming of methane. Int J Hydrogene Energy 42:4155–4164. https://doi.org/10.1016/j.ijhydene.2016.11.067

    Article  CAS  Google Scholar 

  51. Xu Y, Du X, Shi L, Chen T, Wan H, Wang P, Song M (2021) Improved performance of Ni/Al2O3 catalyst deriving from the hydrotalcite precursor synthesized on Al2O3 support for dry reforming of methane. Int J Hydrogene Energy 46(27):14301–14310. https://doi.org/10.1016/j.ijhydene.2021.01.189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education and Scientific Research (MESRS), Algeria and the General Directorate for Scientific Research and Technological Development (DGRSDT), Algeria, for their financial help that prompted the accomplishment of this scientific material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzia Touahra.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djebarri, B., Aider, N., Touahra, F. et al. Synergistic Effect of Bimetallic Ni-Based Catalysts Derived from Hydrotalcite on Stability and Coke Resistance for Dry Reforming of Methane. Chemistry Africa 7, 1091–1106 (2024). https://doi.org/10.1007/s42250-023-00772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00772-7

Keywords

Navigation