Skip to main content
Log in

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH4 selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian L, Wang W, Xia R, Li Z. Ni-based catalyst derived from Ni/Al hydrotalcitelike compounds by the urea hydrolysis method for CO methanation. RSC Advances, 2016, 6: 677–686

    Article  CAS  Google Scholar 

  2. Ma S, Tan Y, Han Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 2011, 20(4): 435–440

    Article  CAS  Google Scholar 

  3. Zhang J, Xin Z, Meng X, Lv Y, Tao M. Effect of MoO3 on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel, 2014, 116: 25–33

    Article  CAS  Google Scholar 

  4. Kopyscinski J, Schiidhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel, 2010, 89(8): 1763–1783

    Article  CAS  Google Scholar 

  5. Zhang G Q, Sun T J, Peng J X, Wang S, Wang S D. A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas. Applied Catalysis A, General, 2013, 462: 75–81

    Article  Google Scholar 

  6. Mohaideen K K, Kim W, Koo K Y, Yoon WL. Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catalysis Communications, 2015, 60: 8–13

    Article  CAS  Google Scholar 

  7. Li J, Zhou L, Li P C, Zhu Q S, Gao J J, Gu F N, Su F B. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas. Chemical Engineering Journal, 2013, 219: 183–189

    Article  CAS  Google Scholar 

  8. Yan X L, Liu Y, Zhao B R, Wang Z, Wang Y, Liu C J. Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies. International Journal of Hydrogen Energy, 2013, 38(5): 2283–2291

    Article  CAS  Google Scholar 

  9. Zhang H, Dong Y Y, Fang W P, Lian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 2013, 34(2): 330–335

    Article  Google Scholar 

  10. Zhao A M, Ying W Y, Zhang H T, Ma H F, Fang D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications, 2012, 17: 34–38

    Article  CAS  Google Scholar 

  11. Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D J, Lim H, Byun C, Song I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: Effect of nickel content. Journal of Industrial and Engineering Chemistry, 2011, 17 (1): 154–157

    Article  CAS  Google Scholar 

  12. Daniela C D, Silva D, Letichevsky S, Borges L E P, Appel L G. The Ni/ZrO2 catalyst and the methanation of CO and CO2. International Journal of Hydrogen Energy, 2012, 37(11): 8923–8928

    Article  Google Scholar 

  13. Hu D C, Gao J J, Ping Y, Jia L H, Gunawan P, Zhong Z Y, Xu G W, Gu F N, Su F B. Enhanced investigation of CO methanation over Ni/ Al2O3 catalysts for synthetic natural gas production. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875–4886

    Article  CAS  Google Scholar 

  14. Rostrup-Nielsen J R, Pedersen K. Sehested. High temperature methanation: Sintering and structure sensitiviy. Applied Catalysis A. Gerneral, 2007, 330: 134–138

    Article  CAS  Google Scholar 

  15. Mirodatos C, Praliaud H, Primetm M. Deactivation of nickel-based catalysts during CO methanation and disproportionation. Journal of Catalysis, 1987, 107: 275–287

    Article  CAS  Google Scholar 

  16. Liu J, Shen W L, Cui D M, Yu J, Su Fa B, Xu G W. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors. Catalysis Communications, 2013, 38: 35–39

    Article  CAS  Google Scholar 

  17. Liu Q, Gao J J, Gu F N, Lu X P, Liu Y J, Li H F, Zhong Z Y, Liu B, Xu GW, Su F B. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation. Journal of Catalysis, 2015, 326: 127–138

    Article  CAS  Google Scholar 

  18. Li Z H, Bian L, Zhu Q J, Wang WH. Ni-Based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds and its activity in the methanation of carbon monoxide. Kinetics and Catalysis, 2014, 55(2): 226–233

    Google Scholar 

  19. Meng F H, Zhong P Z, Li Z, Cui X X, Zheng H Y. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation. Journal of Chemistry, 2014, 5: 1–7

    CAS  Google Scholar 

  20. Kang S H, Ryu J H, Kim J H, Seo S J, Yoo Y D, Prasad P S S, Lim H J, Byun C D. CO-methanation of CO and CO2 on the Nix-Fe1–x/Al2O3 catalysts: Effect of Fe contents. Korean Journal of Chemical Engineering, 2011, 28(12): 2282–2286

    Article  CAS  Google Scholar 

  21. Liu J G, Cao A, Si J, Zhang L H, Hao Q L, Liu Y. Nanoparticles of Ni-Co alloy derived from layered double hydroxides and their catalytic performance for CO methanation. Nano, 2016, 1: 1–4

    Google Scholar 

  22. Yu Y, Jin G Q, Wang Y Y, Guo X Y. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts. Catalysis Communications, 2013, 31: 5–10

    Article  CAS  Google Scholar 

  23. Tian D, Liu Z, Li D, Shi H, Pan W, Cheng Y. Bimetallic Ni-Fe totalmethanation catalyst for the production of substitute natural gas under high pressure. Fuel, 2013, 104: 224–229

    Article  CAS  Google Scholar 

  24. Kustov A L, Frey A M, Larsen K E, Johannessen T, Nrskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A, General, 2007, 320: 98–104

    Article  CAS  Google Scholar 

  25. Rhodes C, Hutchings G J, Ward A M. Water-gas shift reaction: Finding the mechanistic boundary. Catalysis Today, 1995, 23(1): 43–58

    Article  CAS  Google Scholar 

  26. Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 1991, 11 (2): 173–301

    Article  CAS  Google Scholar 

  27. Lebedeva O, Tichit D, Coq B. Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on their activation under oxidising and reducing atmospheres. Applied Catalysis A, General, 1999, 183(1): 61–71

    Article  CAS  Google Scholar 

  28. Feng J T, He Y F, Liu Y N, Du Y Y, Li D Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chemical Society Reviews, 2015, 44(15): 5291–5319

    Article  CAS  Google Scholar 

  29. Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chemical Society Reviews, 2014, 43(20): 7040–7066

    Article  CAS  Google Scholar 

  30. Abelló S, Bolshak E, Montané D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming. Applied Catalysis A, General, 2013, 450: 261–274

    Article  Google Scholar 

  31. Li D L, Koike M, Wang L, Nakagawa Y, Xu Y, Tomishige K. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar. ChemSusChem, 2014, 7(2): 510–522

    Article  CAS  Google Scholar 

  32. Gao W, Li C M, Chen H, Wu M, He S, Wei M, Evans D G, Duan X. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4•H2O. Royal Society of Chemistry, 2014, 16: 1560–1568

    CAS  Google Scholar 

  33. Wang L, Li D L, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A, General, 2011, 392(1-2): 248–255

    Article  CAS  Google Scholar 

  34. Coleman L J I, Epling W, Hudgins R R, Croiset E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A, General, 2009, 363(1-2): 52–63

    Article  CAS  Google Scholar 

  35. Zhao L, Han T, Wang H, Zhang L H, Liu Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Applied Catalysis B: Environmental, 2016, 187: 19–29

    Article  CAS  Google Scholar 

  36. Tan P J, Gao Z H, Shen C F, Du Y L, Li X D, Huang W. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactantassisted coprecipitation method for CO2 reforming of CH4. Chinese Journal of Catalysis, 2014, 35(12): 1955–1971

    Article  CAS  Google Scholar 

  37. Zhu Y J, Zhang S H, Chen B B, Zhang Z S, Shi C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane. Catalysis Today, 2016, 264: 163–170

    Article  CAS  Google Scholar 

  38. Wang WJ, Chen YW. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Applied Catalysis, 1991, 77(2): 223–233

    Article  CAS  Google Scholar 

  39. Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 1995, 23 (1): 3–15

    Article  CAS  Google Scholar 

  40. Nichio N, Casella M, Ferretti O, González M, Nicot C, Moraweck B, Frety R. Partial oxidation of methane to synthesis gas: Behaviour of different Ni supported catalysts. Catalysis Letters, 1996, 42: 65–72

    Article  CAS  Google Scholar 

  41. Claridge J B, Green M L H, Tsang S C, York A P E, Ashcroft A T, Battle P D. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catalysis Letters, 1993, 22(4): 299–305

    Article  CAS  Google Scholar 

  42. Audier M, Oberlin A, Oberlin M, Coulon M, Bonnetain L. Morphology and crystalline order in catalytic carbons. Carbon, 1981, 19(3): 217–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 21576192 and 21376170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Li, S., Gong, D. et al. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas. Front. Chem. Sci. Eng. 11, 613–623 (2017). https://doi.org/10.1007/s11705-017-1664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1664-9

Keywords

Navigation