Skip to main content
Log in

Thermal decomposition behavior, kinetics, thermal safety and burning characteristics of guanidinium-5-aminotetrazole (GA) based propellants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Guanidinium-5-aminotetrazole (GA) was synthesized by mixing 5-aminotetrazole (5-AT) and guanidine carbonate in heated deionized water. The composite propellants containing GA and differential oxidizers (Sr(NO3)2, KNO3, NaNO3) were prepared, and its structural characteristics, thermal decomposition behavior, kinetics, thermal safety and burning characteristics were investigated. The thermal analysis results showed that the decomposition of GA based propellants could be separated into five stages, consisting of one phase change reaction, one exothermic reaction and three endothermic reactions. The reaction mechanisms of each decomposition stage were also researched and considered it was following reaction order models. The thermal safety evaluations were conducted using the obtained related parameters of the exothermic reaction. Combined with the burning characteristics measurement results, GA coupled with Sr(NO3)2 represented a higher thermal safety and more stale combustion process than other two propellant samples, which is also act as a promising formulation to substitute 5-AT based propellant in fire-fighting area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang D, Jiang L, Lu S, Zhang H-P. Insight into cooling agent addition on combustion activity and mechanism of catalyzed 5AT-Sr (NO3)2 based propellant. Combust Flame. 2018;196:407–15.

    Article  CAS  Google Scholar 

  2. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, et al. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161(2–3):589–607.

    Article  CAS  PubMed  Google Scholar 

  3. Han Z, Zhang Y, Du Z, Li Z, Yao Q, Yang Y. The formula design and performance study of gas generators based on 5-aminotetrazole. J Energ Mater. 2018;36(1):61–8.

    Article  CAS  Google Scholar 

  4. Kim A, Liu Z, Crampton G. Explosion suppression of an armoured vehicle crew compartment. In: Progress in safety science and technology: proceedings of the 2004 international symposium on safety science and technology. 2004, vol. 4, pp. 1070–4.

  5. Neutz J, Grosshardt O, Schäufele S, Schuppler H, Schweikert W. Synthesis, characterization and thermal behaviour of guanidinium-5-aminotetrazolate (GA)—a new nitrogen-rich compound. Propellants Explos Pyrotech Int J Deal Sci Technol Asp Energ Mater. 2003;28(4):181–8.

    Article  CAS  Google Scholar 

  6. Brill T, Ramanathan H. Thermal decomposition of energetic materials 76: chemical pathways that control the burning rates of 5-aminotetrazole and its hydrohalide salts. Combust Flame. 2000;122(1–2):165–71.

    Article  CAS  Google Scholar 

  7. Lavoie J. Performance, Stability and Erosivity of Nitrogen-Rich Gun Propellants. Montreal: École Polytechnique de Montréal; 2017.

    Google Scholar 

  8. Zhang X, Zhu W, Wei T, Zhang C, Xiao H. Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J Phys Chem C. 2010;114(30):13142–52.

    Article  CAS  Google Scholar 

  9. Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C–N compound. J Am Chem Soc. 2005;127(36):12537–43.

    Article  CAS  PubMed  Google Scholar 

  10. Tao G-H, Guo Y, Joo Y-H, Twamley B, Jean’ne MS. Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J Mater Chem. 2008;18(45):5524–30.

    Article  CAS  Google Scholar 

  11. Kumbhakarna NR, Shah KJ, Chowdhury A, Thynell ST. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate. Thermochim Acta. 2014;590:51–65.

    Article  CAS  Google Scholar 

  12. Damse R, Ghosh M, Naik N, Sikder A. Thermoanalytical screening of nitrogen-rich compounds for ballistic requirements of gun propellant. J Propuls Power. 2009;25(1):249–56.

    Article  CAS  Google Scholar 

  13. Civiš S, Civiš M, Sovová K, Dryahina K, Kubišta J, Skřehot P, et al. Selected ion flow tube mass spectrometry analyses of laser decomposition products of a range of explosives and ballistic propellants. Anal Methods. 2016;8(5):1145–50.

    Article  Google Scholar 

  14. Henry R. New compounds. Salts of 5-aminotetrazole. J Am Chem Soc. 1952;74(24):6303.

    Article  CAS  Google Scholar 

  15. Kumbhakarna N, Thynell S. Development of a reaction mechanism for liquid-phase decomposition of guanidinium 5-amino tetrazolate. Thermochim Acta. 2014;582:25–34.

    Article  CAS  Google Scholar 

  16. Freeman ES. The kinetics of the thermal decomposition of sodium nitrate and of the reaction between sodium nitrite and oxygen. J Phys Chem. 1956;60(11):1487–93.

    Article  CAS  Google Scholar 

  17. Freeman ES. The kinetics of the thermal decomposition of potassium nitrate and of the reaction between potassium nitrite and oxygen1a. J Am Chem Soc. 1957;79(4):838–42.

    Article  CAS  Google Scholar 

  18. Nair S, James C. Evaluation of kinetic parameters for the thermal decomposition of gamma-irradiated strontium nitrate by dynamic thermogravimetry. Thermochim Acta. 1984;78(1–3):357–70.

    Article  CAS  Google Scholar 

  19. Li M, Jiang L, He J-J, Sun J-H (2019) Kinetic triplet determination and modified mechanism function construction for thermo-oxidative degradation of waste polyurethane foam using conventional methods and distributed activation energy model method. Energy 175:1–13.

    Article  CAS  Google Scholar 

  20. Gao X, Jiang L, Xu Q (2019) Experimental and theoretical study on thermal kinetics and reactive mechanism of nitrocellulose pyrolysis by traditional multi kinetics and modeling reconstruction. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121645.

    Article  PubMed  Google Scholar 

  21. Zhang J, Xue B, Rao G, Chen L, Chen W. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2018;133(1):727–35.

    Article  CAS  Google Scholar 

  22. Sun Y, Ren H, Jiao Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim. 2018;131(1):101–11.

    Article  CAS  Google Scholar 

  23. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132(3):1601–15.

    Article  CAS  Google Scholar 

  24. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.

    Article  CAS  Google Scholar 

  25. Pourmortazavi SM, Mirzajani V, Farhadi K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. 2019;137(1):93–104.

    Article  CAS  Google Scholar 

  26. Wang C, Zhang Y, Wang P, Zhang J, Du Y, Che D. Effects of silicoaluminate oxide and coal blending on combustion behaviors and kinetics of zhundong coal under oxy-fuel condition. J Therm Anal Calorim. 2018;134(3):1975–86.

    Article  CAS  Google Scholar 

  27. Malow M, Wehrstedt K-D. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;120(1–3):21–4.

    Article  CAS  PubMed  Google Scholar 

  28. Niu H, Chen S, Jin S, Li B, Li X, Wang J, et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX. J Therm Anal Calorim. 2018;131(3):3193–9.

    Article  CAS  Google Scholar 

  29. Liu Z-T, Zhang F, Du P, Xu B. Effect of NQ content on the thermal decomposition of nitroguanidine propellant using isoconversional methods. J Therm Anal Calorim. 2019;137(2):473–80.

    Article  CAS  Google Scholar 

  30. Wang K, Wang J, Guo T, Wang W, Liu D. Research on the thermal decomposition kinetics and the isothermal stability of HMX. J Therm Anal Calorim. 2019;135(4):2513–8.

    Article  CAS  Google Scholar 

  31. Zhang Y, Liu Y, Shi X, Yang C, Wang W, Li Y. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel. 2018;233:68–76.

    Article  CAS  Google Scholar 

  32. Rao G, Feng W, Zhang J, Wang S, Chen L, Guo Z, et al. Simulation approach to decomposition kinetics and thermal hazards of hexamethylenetetramine. J Therm Anal Calorim. 2019;135(4):2447–56.

    Article  CAS  Google Scholar 

  33. Rastogi R, Singh G, Singh RR. Burning rate catalysts for composite solid propellants. Combust Flame. 1977;30:117–24.

    Article  CAS  Google Scholar 

  34. Cao C-Y, Zhang D, Liu C-C, Lu S, Zhang H-P. Experimental investigation on combustion behaviors and reaction mechanisms for 5-aminotetrazole solid propellant with nanosized metal oxide additives under elevated pressure conditions. Appl Therm Eng. 2019;162:114207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities 2018YFC0807605, the China Postdoctoral Science Special Foundation under Grant No. 2018T110627, the National Natural Science Foundation of China (No. 51904283) and the Anhui Provincial Natural Science Foundation under Grant No. 1908085QE245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhang, D., Lu, S. et al. Thermal decomposition behavior, kinetics, thermal safety and burning characteristics of guanidinium-5-aminotetrazole (GA) based propellants. J Therm Anal Calorim 143, 609–618 (2021). https://doi.org/10.1007/s10973-019-09063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09063-1

Keywords

Navigation