Skip to main content
Log in

Prediction of the auto-ignition temperature of binary liquid mixtures based on the quantitative structure–property relationship approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The auto-ignition temperature (AIT) is one of the most important parameters in flammability risk assessment and management in the chemical process. Therefore, in this work, quantitative structure–property relationship approach was employed to estimate the AIT of binary liquid mixtures only based on the information of molecular structures. Various kinds of molecular descriptors were calculated using Dragon 6.0 software after the geometry optimization of molecular structures. Genetic algorithm (GA) was used to select the best subset of descriptors which have a significant contribution to AIT. Two novel models including multiple linear regression (MLR) model and support vector machine (SVM) model were developed based on the GA-selected molecular descriptors. The resulted models showed satisfied goodness-of-fit, robustness and external predictability after the rigorous verification based on appropriate criteria. The MLR model showed great performance with the average absolute error (AAE) of training set and test set being 13.420 °C and 15.076 °C, while the AAE of SVM model was reduced to 5.629 °C and 9.206 °C, respectively. The two optimal models could provide a convenient and effective way to predict the AIT of binary liquid mixtures as well as guidance for the safety design of the chemical process industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gharagheizi F. An accurate model for prediction of autoignition temperature of pure compounds. J Hazard Mater. 2011;189:211–21.

    Article  CAS  PubMed  Google Scholar 

  2. Pan Y, Jiang JC, Wang R, et al. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. J Hazard Mater. 2008;157:510–7.

    Article  CAS  PubMed  Google Scholar 

  3. Lazzús JA. Autoignition temperature prediction using an artificial neural network with particle swarm optimization. Int J Thermophys. 2011;32:957–73.

    Article  CAS  Google Scholar 

  4. ASTM International, ASTM standard test method E659-15, West Conshohocken, PA, 2000.

  5. Pan Y, Jiang JC, Wang R, et al. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. J Hazard Mater. 2009;164:1242–9.

    Article  CAS  PubMed  Google Scholar 

  6. Keshavarz MH, Jafari M, Esmaeilpour K, et al. New and reliable model for prediction of autoignition temperature of organic compounds containing energetic groups. Process Saf Environ Prot. 2018;113:491–7.

    Article  CAS  Google Scholar 

  7. Egolf LM, Jurs PC. Estimation of autoignition temperatures of hydrocarbons, alcohols, and esters from molecular structure. Ind Eng Chem Res. 1992;31:1798–807.

    Article  CAS  Google Scholar 

  8. Suzuki T. Quantitative structure-property relationships for auto-ignition temperatures of organic compounds. Fire Mater. 1994;18:81–8.

    Article  CAS  Google Scholar 

  9. Tetteh J, Metcalfe E, Howells SL. Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative-structure property relationships. Chemom Intell Lab Syst. 1996;32:177–91.

    Article  CAS  Google Scholar 

  10. Tetteh J, Howells S, Metcalfe E, et al. Optimization of radial basis function neural networks using biharmonic spline interpolation. Chemom Intell Lab Syst. 1998;41:17–29.

    Article  CAS  Google Scholar 

  11. Kim YS, Lee SK, Kim JH, et al. Prediction of autoignition temperatures (AITs) for hydrocarbons and compounds containing heteroatoms by the quantitative structure-property relationship. J Chem Soc Perkin Trans. 2002;2:2087–92.

    Article  Google Scholar 

  12. Tsai FY, Chen CC, Liaw HJ. A model for predicting the auto-ignition temperature using quantitative structure property relationship approach. Procedia Eng. 2012;45:512–7.

    Article  CAS  Google Scholar 

  13. Borhani TNG, Afzali A, Bagheri M. QSPR estimation of the auto-ignition temperature for pure hydrocarbons. Process Saf Environ Prot. 2016;103:115–25.

    Article  CAS  Google Scholar 

  14. Pan Y, Jiang JC, Wang R, et al. Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemom Intell Lab Syst. 2008;92:169–78.

    Article  CAS  Google Scholar 

  15. Albahri TA, George RS. Artificial neural network investigation of the structural group contribution method for predicting pure components autoignition temperature. Ind Eng Chem Res. 2003;42:5708–14.

    Article  CAS  Google Scholar 

  16. Chen CC, Liaw HJ, Kuo YY. Prediction of autoignition temperatures of organic compounds by the structural group contribution approach. J Hazard Mater. 2009;162:746–62.

    Article  CAS  PubMed  Google Scholar 

  17. Abbasi A, Gitifar V, Setoodeh P. QSPR strategy to model and analyze surface tension of binary-liquid mixtures: a large-data-set case. Chemom Intell Lab Syst. 2016;155:36–45.

    Article  CAS  Google Scholar 

  18. Gaudin T, Rotureau P, Fayet G. Mixture descriptors toward the development of quantitative structure-property relationship models for the flash points of organic mixtures. Ind Eng Chem Res. 2015;54:6596–604.

    Article  CAS  Google Scholar 

  19. Zhou LL, Jiang JC, Ni L, et al. Predicting the superheat limit temperature of binary mixtures based on the quantitative structure property relationship. J Loss Prev Process Ind. 2016;43:432–7.

    Article  Google Scholar 

  20. Torabian E, Sobati MA. New structure-based models for the prediction of flash point of multi-component organic mixtures. Thermochim Acta. 2019;672:162–72.

    Article  CAS  Google Scholar 

  21. Zhou LL, Wang BB, Jiang JC, et al. Predicting the gas-liquid critical temperature of binary mixtures based on the quantitative structure property relationship. Chemom Intell Lab Syst. 2017;167:190–5.

    Article  CAS  Google Scholar 

  22. Wang BB, Park H, Xu KL, et al. Prediction of lower flammability limits of blended gases based on quantitative structure-property relationship. J Therm Anal Calorim. 2018;132:1124–30.

    Google Scholar 

  23. Qin LT, Chen YH, Zhang X, et al. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere. 2018;198:122–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ye LT, Pan Y, Jiang JC. Experimental determination and calculation of auto-ignition temperature of binary flammable liquid mixtures. Pet Process Sect. 2015;31:753–9.

    CAS  Google Scholar 

  25. Lan JX, Jiang JC, Pan Y, et al. Experimental measurements and numerical calculation of auto-ignition temperatures for binary miscible liquid mixtures. Process Saf Environ Prot. 2018;113:22–9.

    Article  CAS  Google Scholar 

  26. Oprisiu I, Varlamova E, Muratov E, et al. QSPR approach to predict nonadditive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquids. Mol Inf. 2012;31:491–502.

    Article  CAS  Google Scholar 

  27. Muratov EN, Varlamova EV, Artemenko AG, et al. Existing and development approaches for QSAR analysis of mixtures. Mol Inf. 2012;31:202–21.

    Article  CAS  Google Scholar 

  28. Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. New York: Wiley; 2009.

    Book  Google Scholar 

  29. Todeschini R, Consonni V, Pavan M. DRAGON 6 user’s manual. http://www.talete.mi.it/help/dragon_help/index.html. 2010.

  30. Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure–property relationships. J Chem Inf Comput Sci. 1994;34:854–66.

    Article  CAS  Google Scholar 

  31. Gramatica P, Chirico N, Papa E, et al. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34:2121–32.

    Article  CAS  Google Scholar 

  32. Gramatica P, Cassani S, Chirico N. QSARINS-Chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem. 2014;35:1036–44.

    Article  CAS  PubMed  Google Scholar 

  33. Vapnik VN. The nature of statistical learning theory. New York: Springer; 1995.

    Book  Google Scholar 

  34. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.

    Google Scholar 

  35. Wang BB, Zhou LL, Xu KL, et al. Prediction of minimum ignition energy from molecular structure using quantitative structure-property relationship (QSPR) models. Ind Eng Chem Res. 2016;56:47–51.

    Article  CAS  Google Scholar 

  36. Zhou LL, Wang BB, Jiang JC, et al. Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds. Thermochim Acta. 2017;655:112–6.

    Article  CAS  Google Scholar 

  37. Pan Y, Jiang JC, Wang R, et al. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. J Hazard Mater. 2009;168:962–9.

    Article  CAS  PubMed  Google Scholar 

  38. Suleiman MA, Owolabi TO, Adeyemo HB, et al. Modeling of autoignition temperature of organic energetic compounds using hybrid intelligent method. Process Saf Environ Prot. 2018;120:79–86.

    Article  CAS  Google Scholar 

  39. Yu KL, Xu LS, Zhu YL, et al. Correlation between 13C NMR chemical shifts and complete sets of descriptors of natural coumarin derivatives. Chemom Intell Lab Syst. 2019;184:167–74.

    Article  CAS  Google Scholar 

  40. Hsu CW, Chang CC, Lin CJ. A practical guide to support classification. http://www.csie.ntu.edu.tw/~cjlin. 2016.

  41. OECD. Guidance document on the validation of (quantitative) structure–activity relationship [(Q)SAR] models. 2007.

  42. Eriksson L, Jaworska J, Worth AP, et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect. 2003;111:1361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kiralj R, Ferreira MMC. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc. 2009;20:770–87.

    Article  CAS  Google Scholar 

  44. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inf. 2003;22(1):69–77.

    CAS  Google Scholar 

  45. Schuurmann G, Ebert R, Chen J, et al. External validation and prediction employing the predictive squared correlation coefficient-test set activity mean vs training set activity mean. J Chem Inf Model. 2008;48:2140–5.

    Article  CAS  PubMed  Google Scholar 

  46. Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model. 2009;49:1669–78.

    Article  CAS  PubMed  Google Scholar 

  47. Consonni V, Ballabio D, Todeschini R. Evaluation of model predictive ability by external validation techniques. J Chemom. 2010;24:194–201.

    Article  CAS  Google Scholar 

  48. Chirico N, Gramatica P. Real external predictivity of QSAR models: part 2—new intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model. 2012;52:2048–58.

    Article  CAS  Google Scholar 

  49. Ojha PK, Mitra I, Das RN, et al. Further exploring r 2m metrics for validation of QSPR models. Chemom Intell Lab Syst. 2011;107:194–205.

    Article  CAS  Google Scholar 

  50. Roy K, Mitra I, Kar S, et al. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012;52:396–408.

    Article  CAS  PubMed  Google Scholar 

  51. Mitra I, Roy PP, Kar S, et al. On further application of r 2m as a metric for validation of QSAR models. J Chemom. 2010;24:22–33.

    Article  CAS  Google Scholar 

  52. Roy PP, Paul S, Mitra I, et al. On two novel parameters for validation of predictive QSAR models. Molecules. 2009;14:1660–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26:694–701.

    Article  CAS  Google Scholar 

  54. Hair JF, Black B, Bebin BJ, et al. Multivariate data analysis. Pearson new international edition (7th edn). 2013.

  55. Randic M. Novel shape descriptors for molecular graphs. J Chem Inf Comput Sci. 2001;41:607–13.

    Article  CAS  PubMed  Google Scholar 

  56. Labute P. A widely applicable set of descriptors. J Mol Gr Model. 2000;18:464–77.

    Article  CAS  Google Scholar 

  57. Devinyak O, Havrylyuk D, Lesyk R. 3D-MoRSE descriptors explained. J Mol Gr Model. 2014;54:194–203.

    Article  CAS  Google Scholar 

  58. Zhao XY, Pan Y, Jiang JC, et al. Thermal hazard of ionic liquids: modeling thermal decomposition temperatures of imidazolium ionic liquid via QSPR method. Ind Eng Chem Res. 2017;56:4185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. DUT19LAB27).

Funding

This research was supported by National Natural Science Fund of China (No. 21576136, 51974165), and National Program on Key Basic Research Project of China (2017YFC0804801, 2016YFC0801502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juncheng Jiang or Yong Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Supplementary material 2 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Jiang, J., Pan, Y. et al. Prediction of the auto-ignition temperature of binary liquid mixtures based on the quantitative structure–property relationship approach. J Therm Anal Calorim 140, 397–409 (2020). https://doi.org/10.1007/s10973-019-08774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08774-9

Keywords

Navigation