Skip to main content
Log in

Optimizing chevron plate heat exchangers based on the second law of thermodynamics and genetic algorithm

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the current work is to determine optimal geometries and flow conditions of the chevron plate heat exchangers based on entropy generation minimization approach (a combination of the second law of the thermodynamics and heat transfer and fluid-flow equations). The optimization process is carried out by considering the entropy generation as target function. The all effective parameters are taken into account including chevron angle (30° ≤ β ≤ 60°), surface enlargement factor (1.1 ≤ ϕ ≤ 1.4), dimensionless plate width (19 ≤ \({\mathcal{W}}\) ≤ 79), Prandtl number (2.6 ≤ Pr ≤ 6.4) and Reynolds number (1000 ≤ Re ≤ 8000). The results indicate that for each surface enlargement factor, there is an optimum chevron angle. Also, by increasing chevron angle, the optimum values of dimensionless plate width, working fluid Prandtl number and Reynolds number decrease. After presenting a comprehensive sensitivity analysis, the genetic algorithm is utilized to find optimum conditions at (a) designing and (b) operating situations. In the first situation, the optimization process reveals optimum chevron angle, surface enlargement factor, dimensionless plate width, Prandtl number and Reynolds number. For the second situation, a useful and practical correlation is developed for obtaining optimum Reynolds number as a function of the geometrical parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Linear programming technique for multidimensional analysis of preference.

Abbreviations

A c :

Channel flow cross-sectional area (m2)

b :

Corrugation depth (m)

Be :

Bejan number (−)

C p :

Specific heat (J kg−1 K−1)

d e :

Equivalent diameter (m)

f :

Friction factor (−)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Plate length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

N g :

Dimensionless entropy generation rate (−)

Nu :

Nusselt number (−)

Pr :

Prandtl number (−)

Q :

Dimensionless heat flux (−)

q′:

Heat transfer per unit length (W m−1)

Re :

Reynolds number (−)

\(\dot{S}'_{\mathrm{gen}}\) :

Entropy generation rate per unit length (W m−1 K−1)

\(\dot{S}_{{{\text{gen}},\Delta {\text{T}}}}\) :

Entropy generation rate due to the heat transfer (W K−1)

\(\dot{S}_{{{\text{gen}},\Delta {\text{P}}}}\) :

Entropy generation rate due to the fluid friction (W K−1)

St :

Stanton number (−)

t :

Plate thickness (m)

T :

Average flow temperature (K)

w :

Plate width (m)

β :

Plate chevron angle (°)

μ :

Viscosity (N s m−2)

ρ :

Density (kg m−3)

ϕ :

Surface enlargement factor (−)

Φ:

Irreversibility distribution ratio (−)

Ψ:

Duty parameter of heat exchanger (−)

opt:

Optimum

tot:

Total

References

  1. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf. 2019;104:33–40. https://doi.org/10.1016/j.icheatmasstransfer.2019.02.002.

    Article  CAS  Google Scholar 

  2. Maddah H, Aghayari R, Mirzaee M, Ahmadi M, Sadeghzadeh M, Chamkha A. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.

    Article  CAS  Google Scholar 

  3. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303. https://doi.org/10.1007/s10973-018-7866-7.

    Article  CAS  Google Scholar 

  4. Payambarpour S, Nazari MA, Ahmadi MH, Chamkha AJ. Effect of partially wet-surface condition on the performance of fin-tube heat exchanger. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-07-2018-0362.

    Article  Google Scholar 

  5. Okati V, Ebrahimi-Moghadam A, Behzadmehr A, Farzaneh-Gord M. Proposal and assessment of a novel hybrid system for water desalination using solar and geothermal energy sources. Desalination. 2019;467:229–44. https://doi.org/10.1016/j.desal.2019.06.011.

    Article  CAS  Google Scholar 

  6. Arsenyeva O, Kapustenko P, Tovazhnyanskyy L, Khavin G. The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions. Energy. 2013;57:201–7. https://doi.org/10.1016/j.energy.2012.12.034.

    Article  Google Scholar 

  7. Nilpueng K, Keawkamrop T, Ahn HS, Wongwises S. Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. Int Commun Heat Mass Transf. 2018;91:201–9. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.009.

    Article  Google Scholar 

  8. Arsenyeva O, Tran J, Piper M, Kenig E. An approach for pillow plate heat exchangers design for single-phase applications. Appl Therm Eng. 2019;147:579–91. https://doi.org/10.1016/j.applthermaleng.2018.08.083.

    Article  Google Scholar 

  9. Kumar B, Soni A, Singh SN. Effect of geometrical parameters on the performance of chevron type plate heat exchanger. Exp Therm Fluid Sci. 2018;91:126–33. https://doi.org/10.1016/j.expthermflusci.2017.09.023.

    Article  Google Scholar 

  10. Yang J, Jacobi A, Liu W. Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data. Appl Therm Eng. 2017;113:1547–57. https://doi.org/10.1016/j.applthermaleng.2016.10.147.

    Article  CAS  Google Scholar 

  11. Lee J, Lee K-S. Flow characteristics and thermal performance in chevron type plate heat exchangers. Int J Heat Mass Transf. 2014;78:699–706. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.033.

    Article  Google Scholar 

  12. Han X-H, Cui L-Q, Chen S-J, Chen G-M, Wang Q. A numerical and experimental study of chevron, corrugated-plate heat exchangers. Int Commun Heat Mass Transf. 2010;37:1008–14. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.026.

    Article  Google Scholar 

  13. Dović D, Palm B, Švaić S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. Int J Heat Mass Transf. 2009;52:4553–63. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.074.

    Article  Google Scholar 

  14. Raja BD, Jhala RL, Patel V. Thermal-hydraulic optimization of plate heat exchanger: a multi-objective approach. Int J Therm Sci. 2018;124:522–35. https://doi.org/10.1016/j.ijthermalsci.2017.10.035.

    Article  Google Scholar 

  15. Farzaneh-Gord M, Ameri H, Arabkoohsar A. Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach. Appl Therm Eng. 2016;108:1279–87. https://doi.org/10.1016/j.applthermaleng.2016.08.028.

    Article  Google Scholar 

  16. Zhou Y, Zhu L, Yu J, Li Y. Optimization of plate-fin heat exchangers by minimizing specific entropy generation rate. Int J Heat Mass Transf. 2014;78:942–6. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.053.

    Article  Google Scholar 

  17. Babaelahi M, Sadri S, Sayyaadi H. Multi-objective optimization of a cross-flow plate heat exchanger using entropy generation minimization. Chem Eng Technol. 2013;37:87–94. https://doi.org/10.1002/ceat.201300411.

    Article  CAS  Google Scholar 

  18. Guo J, Cheng L, Xu M. Multi-objective optimization of heat exchanger design by entropy generation minimization. J Heat Transf. 2010;132:81801–8. https://doi.org/10.1115/1.4001317.

    Article  Google Scholar 

  19. Dormohammadi R, Farzaneh-Gord M, Ebrahimi-Moghadam A, Ahmadi MH. Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. J Mol Liq. 2018;269:229–40. https://doi.org/10.1016/j.molliq.2018.07.119.

    Article  CAS  Google Scholar 

  20. Ebrahimi-Moghadam A, Mohseni-Gharyehsafa B, Farzaneh-Gord M. Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector. Renew Energy. 2018;129:473–85. https://doi.org/10.1016/j.renene.2018.06.023.

    Article  CAS  Google Scholar 

  21. Farzaneh-Gord M, Pahlevan-Zadeh MS, Ebrahimi-Moghadam A, Rastgar S. Measurement of methane emission into environment during natural gas purging process. Environ Pollut. 2018;242:2014–26. https://doi.org/10.1016/j.envpol.2018.07.027.

    Article  CAS  PubMed  Google Scholar 

  22. Ebrahimi-Moghadam A, Farzaneh-Gord M, Arabkoohsar A, Moghadam AJ. CFD analysis of natural gas emission from damaged pipelines: correlation development for leakage estimation. J Clean Prod. 2018;199:257–71. https://doi.org/10.1016/j.jclepro.2018.07.127.

    Article  CAS  Google Scholar 

  23. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. London: CRC Press; 1995.

    Google Scholar 

  24. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  25. Chen L, Xia S, Sun F. Entropy generation minimization for isothermal crystallization processes with a generalized mass diffusion law. Int J Heat Mass Transf. 2018;116:1–8. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.001.

    Article  Google Scholar 

  26. Feng H, Chen L, Wu Z, Xie Z. Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. Int J Heat Mass Transf. 2019;131:750–6. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.105.

    Article  CAS  Google Scholar 

  27. Feng H, Chen L, Xia S. Constructal design for disc-shaped heat exchanger with maximum thermal efficiency. Int J Heat Mass Transf. 2019;130:740–6. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.003.

    Article  Google Scholar 

  28. Feng H, Chen L, Xie Z, Sun F. “Disc-point” heat and mass transfer constructal optimization for solid–gas reactors based on entropy generation minimization. Energy. 2015;83:431–7. https://doi.org/10.1016/j.energy.2015.02.040.

    Article  CAS  Google Scholar 

  29. Li P, Chen L, Xia S, Zhang L. Entropy generation rate minimization for methanol synthesis via a CO2 hydrogenation reactor. Entropy. (2019). https://doi.org/10.3390/e21020174.

    Article  CAS  Google Scholar 

  30. Chen L, Zhang L, Xia S, Sun F. Entropy generation minimization for CO2 hydrogenation to light olefins. Energy. 2018;147:187–96. https://doi.org/10.1016/j.energy.2018.01.050.

    Article  CAS  Google Scholar 

  31. Chen L, Feng H, Xie Z. Generalized thermodynamic optimization for iron and steel production processes: theoretical exploration and application cases. Entropy. (2016). https://doi.org/10.3390/e18100353.

    Article  Google Scholar 

  32. Chen L, Feng H, Xie Z, Sun F. Progress of constructal theory in China over the past decade. Int J Heat Mass Transf. 2019;130:393–419. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.064.

    Article  Google Scholar 

  33. Feng H, Chen L, Xie Z. Multi-disciplinary, multi-objective and multi-scale constructal optimizations for heat and mass transfer processes performed in Naval University of Engineering, a review. Int J Heat Mass Transf. 2017;115:86–98. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.011.

    Article  Google Scholar 

  34. Abou Elmaaty TM, Kabeel AE, Mahgoub M. Corrugated plate heat exchanger review. Renew Sustain Energy Rev. 2017;70:852–60. https://doi.org/10.1016/j.rser.2016.11.266.

    Article  Google Scholar 

  35. Muley A, Manglik RM. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates. J Heat Transf. 1999;121:110–7. https://doi.org/10.1115/1.2825923.

    Article  CAS  Google Scholar 

  36. Keklikcioglu O, Ozceyhan V. Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy. 2017;139:65–75. https://doi.org/10.1016/j.energy.2017.07.145.

    Article  Google Scholar 

  37. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2019;135:801–11. https://doi.org/10.1007/s10973-018-7276-x.

    Article  CAS  Google Scholar 

  38. Ebrahimi-Moghadam A, Moghadam AJ. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98. https://doi.org/10.1016/j.applthermaleng.2018.12.068.

    Article  CAS  Google Scholar 

  39. Prakash Narayan G, Lienhard JH, Zubair SM. Entropy generation minimization of combined heat and mass transfer devices. Int J Therm Sci. 2010;49: 2057–66. https://doi.org/10.1016/j.ijthermalsci.2010.04.024.

    Article  CAS  Google Scholar 

  40. Srinivasacharya D, Bindu KH. Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy. 2016;111:165–77. https://doi.org/10.1016/j.energy.2016.05.101.

    Article  Google Scholar 

  41. Taghizadeh S, Asaditaheri A. Heat transfer and entropy generation of laminar mixed convection in an inclined lid driven enclosure with a circular porous cylinder. Int J Therm Sci. 2018;134:242–57. https://doi.org/10.1016/j.ijthermalsci.2018.08.018.

    Article  Google Scholar 

  42. Chen L, Yang A, Xie Z, Sun F. Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks. Int J Therm Sci. 2017;111:168–74. https://doi.org/10.1016/j.ijthermalsci.2016.08.017.

    Article  Google Scholar 

  43. Feng H, Chen L, Xie Z, Sun F. Constructal entropy generation rate minimization for asymmetric vascular networks in a disc-shaped body. Int J Heat Mass Transf. 2015;91:1010–7. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.045.

    Article  Google Scholar 

  44. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. Int J Heat Mass Transf. 2014;78:64–75. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.051.

    Article  CAS  Google Scholar 

  45. Focke WW, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers. Int J Heat Mass Transf. 1985;28:1469–79. https://doi.org/10.1016/0017-9310(85)90249-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Sodagar-Abardeh or Amir Ebrahimi-Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this section, formulation for the rate of entropy generation, \(\dot{S}'_{\mathrm{gen}}\) (W mK−1), is derived for internal flow in a heat plate exchanger. Consider the flow passage of cross-section of a PHE (Fig. 11). The bulk properties of the stream \(\dot{m}\) are \(T, P, h, \rho , s\). When heat is transferred to stream at a rate of \(q^{\prime}\), temperature difference is ΔT. Focusing on slice of thickness dx as a system, the rate of entropy generation is given by the second law of thermodynamics as:

Fig. 11
figure 11

Heat transfer in a PHE cross-section

$${{d}}\dot{S}'_{\mathrm{gen}} = \dot{m}{{d}}s - \frac{{q^{\prime}{{d}}x}}{T + \Delta T}$$
(13)

The first law of thermodynamics is applied to same system as:

$$\dot{m}{{d}}h = q^{\prime}{{d}}x$$
(14)

In addition for any pure substance:

$$\frac{dh}{dx} = T\left( {\frac{ds}{sx}} \right) + \frac{1}{\rho }\left( {\frac{dp}{dx}} \right)$$
(15)

Substituting \(d\dot{S}'_{\rm gen}\) given by Eq. (13) and dh given by Eq. (14) into Eq. (15) yields the entropy generation rate per unit length:

$$\dot{S}'_{\mathrm{gen}} = \frac{{q^{\prime}\Delta T}}{{T^{2} \left( {1 + \tau } \right)}} + \frac{{\dot{m}}}{\rho T}\left( { - \frac{dp}{dx}} \right)$$
(16)

Dimensionless temperature difference τ is negligible as compared to unity, as a result:

$$\dot{S}'_{\mathrm{gen}} = \frac{{q^{\prime}\Delta T}}{{T^{2} }} + \frac{{\dot{m}}}{\rho T}\left( { - \frac{dp}{dx}} \right)$$
(17)

The relationship between heat transfer rate q and wall-bulk fluid temperature is expressed in the form of Stanton number:

$$St = \frac{{\frac{{q^{\prime}}}{2w\Delta T}}}{{c_{\mathrm{p}} \left( {\dot{m}/A_{\mathrm{c}} } \right)}}$$
(18)

The friction characteristics of the fluid inside a duct are usually reported by correlation of the friction factor:

$$f = \frac{{\rho d_{e} }}{{2\left( {\dot{m}/A_{\mathrm{c}} } \right)^{2} }}\left( { - \frac{dP}{dx}} \right)$$
(19)

Substituting ΔT given by Eq. (18) and \(\frac{{{\text{d}}p}}{{{\text{d}}x}}\) given by Eq. (19) into Eq. (17), the entropy generation rate per unit length for an internal fluid flow could be written as Eq. (8):

$$\dot{S}'_{\mathrm{gen}} = \frac{{q{\prime}^{2} d_{\mathrm{e}} }}{{4T^{2} \dot{m}C_{\mathrm{p}} St}} + \frac{{2\dot{m}^{3} f}}{{\rho^{2} Td_{\mathrm{e}} A_{\mathrm{c}}^{2} }}$$
(20)

Appendix 2

The following equation can be used for determining the goodness evaluation parameter of R2:

$$R^{2} = 1 - \frac{{{\text{SS}}_{\mathrm{residuals}} }}{{{\text{SS}}_{\mathrm{total}} }}$$
(21)

where the sum-of-squares of the residuals (SSresiduals) from the regression line (fitted curve) has n - K degrees of freedom, where n is the number of data points and K is the number of parameters fit by the regression. The total sum-of-squares (SStotal) is the sum of the squares of the distances from a horizontal line through the mean of all Y values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodagar-Abardeh, J., Ebrahimi-Moghadam, A., Farzaneh-Gord, M. et al. Optimizing chevron plate heat exchangers based on the second law of thermodynamics and genetic algorithm. J Therm Anal Calorim 139, 3563–3576 (2020). https://doi.org/10.1007/s10973-019-08742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08742-3

Keywords

Navigation