Skip to main content
Log in

Experimental study of an air humidity absorption cycle based on the MHI

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An office drinking water cooler is converted to a humidity absorption device. The reservoir-type evaporator of the water cooler is separated, and a finned-tube evaporator is installed. A channel is installed at the inlet of the evaporator. A fan, a cool-mist humidifier, and a heater are installed inside this channel, where the amount of humidity and heat production can be adjusted. Several pressure gauges are installed at different locations of the cycle and monitor cycle performance while working. Pressure variations in different locations of the cycle are measured at various inlet air conditions. The MHI is defined as the ratio of condensation enthalpy to the total given heat. Changes of this index are evaluated by changing the input conditions. Results show that with increasing the air temperature, the condenser and evaporator pressure increases. Results of absorbed water in various MHIs show that with increasing this index, the amount of absorbed water increases. The graph of the absorbed water based on the MHI can be used to estimate the amount of water collected from this device under different climatic conditions. The amounts of collected water from this device for several different cities of Iran are presented. Results show that in high MHIs for a device with a quarter horsepower, the water production rate can reach to 250 g h−1. Also, if the device is working continuously in these conditions, it can produce about 4 kg of water per day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a c :

Accuracy of a sensor

h :

Enthalpy (kJ kg−1)

h fg :

Latent enthalpy (kJ kg−1)

MHI:

Moisture Harvesting Index

\(\dot{m}\) :

Produced water per time (g h−1)

q tot :

The heat needed to produce one kilogram of water (kJ kg−1)

r 2 :

Coefficient of determination

R :

A sample relation

T :

Temperature (°C)

U :

Standard uncertainty

φ :

Relative humidity (%)

ω :

Absolute humidity (kgwater kg−1air)

i:

Inlet

o:

Outlet

References

  1. Kummu M, Ward PJ, de Moel H, Varis O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett. 2010;5:034006.

    Article  Google Scholar 

  2. Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem Eng Process Process Intensif. 2012;51:2–17.

    Article  CAS  Google Scholar 

  3. Doshi S, Chaudhari S, Aitwade S, Singh R, Waykole CP. Development of water generation system from air. Int J Curr Eng Technol. 2016;4:202–3.

    Google Scholar 

  4. Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, et al. Membrane-based seawater desalination: present and future prospects. Desalination. 2017;401:16–21.

    Article  CAS  Google Scholar 

  5. Garg K, Khullar V, Das SK, Tyagi H. Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector. J Therm Anal Calorim. 2019;135:1465–78. https://doi.org/10.1007/s10973-018-7547-6.

    Article  CAS  Google Scholar 

  6. Dhivagar R, Sundararaj S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J Therm Anal Calorim. 2019;136:89–99. https://doi.org/10.1007/s10973-018-7746-1.

    Article  CAS  Google Scholar 

  7. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–7. https://doi.org/10.1126/science.1200488.

    Article  CAS  PubMed  Google Scholar 

  8. Gido B, Friedler E, Broday DM. Assessment of atmospheric moisture harvesting by direct cooling. Atmos Res. 2016;182:156–62.

    Article  Google Scholar 

  9. Beysens D, Milimouk I. The case for alternative fresh water sources. Pour les Resour Altern en eau Secher. 2000;11:1–17.

    Google Scholar 

  10. Montecinos S, Carvajal D, Cereceda P, Concha M. Collection efficiency of fog events. Atmos Res. 2018;209:163–9.

    Article  Google Scholar 

  11. Klemm O, Schemenauer RS, Lummerich A, Cereceda P, Marzol V, Corell D, et al. Fog as a fresh-water resource: overview and perspectives. Ambio. 2012;41:221–34. https://doi.org/10.1007/s13280-012-0247-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Domen JK, Stringfellow WT, Camarillo MK, Gulati S. Fog water as an alternative and sustainable water resource. Clean Technol Environ Policy. 2014;16:235–49. https://doi.org/10.1007/s10098-013-0645-z.

    Article  Google Scholar 

  13. Khalil B, Adamowski J, Shabbir A, Jang C, Rojas M, Reilly K, et al. A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustain Water Resour Manag. 2016;2:71–86. https://doi.org/10.1007/s40899-015-0038-z.

    Article  Google Scholar 

  14. Muñoz-García MA, Moreda GP, Raga-Arroyo MP, Marín-González O. Water harvesting for young trees using Peltier modules powered by photovoltaic solar energy. Comput Electron Agric. 2013;93:60–7.

    Article  Google Scholar 

  15. Sharan G, Roy AK, Royon L, Mongruel A, Beysens D. Dew plant for bottling water. J Clean Prod. 2017;155:83–92.

    Article  Google Scholar 

  16. Khalil B, Adamowski J, Rojas M, Reilly K. Towards an independent dew water irrigation system for arid or insular areas. In: 2014 ASABE Annual International Meeting. Montreal: American Society of Agricultural and Biological Engineers; 2014; p. 1–10.

  17. Edmund A. Method for gaining water out of the atmosphere. Google Patents; 1938.

  18. Scrivani A, Bardi U. A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region. Desalination. 2008;220:592–9.

    Article  CAS  Google Scholar 

  19. Seneviratne SI, Lüthi D, Litschi M, Schär C. Land–atmosphere coupling and climate change in Europe. Nature. 2006;443:205–9.

    Article  CAS  Google Scholar 

  20. El-Ghonemy AMK. RETRACTED: Fresh water production from/by atmospheric air for arid regions, using solar energy: review. Renew Sustain Energy Rev. 2012;16:6384–422.

    Article  Google Scholar 

  21. Wahlgren RV. Atmospheric water vapour processor designs for potable water production: a review. Water Res. 2001;35:1–22.

    Article  CAS  Google Scholar 

  22. Al-hassan GA. Fog water collection evaluation in Asir region–Saudi Arabia. Water Resour Manag. 2009;23:2805–13. https://doi.org/10.1007/s11269-009-9410-9.

    Article  Google Scholar 

  23. Anbarasu T, Pavithra S. Vapour compression refrigeration system generating fresh water from humidity in the air. Int Conf Sustain Energy Intell Syst. 2011;45:75–9. https://doi.org/10.1049/cp.2011.0338.

    Article  Google Scholar 

  24. Milani D, Qadir A, Vassallo A, Chiesa M, Abbas A. Experimentally validated model for atmospheric water generation using a solar assisted desiccant dehumidification system. Energy Build. 2014;77:236–46.

    Article  Google Scholar 

  25. Mohamed MH, William GE, Fatouh M. Solar energy utilization in water production from humid air. Sol Energy. 2017;148:98–109.

    Article  CAS  Google Scholar 

  26. Kim H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM, et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun. 2018;9:1191.

    Article  Google Scholar 

  27. Salek F, Moghaddam AN, Naserian MM. Thermodynamic analysis and improvement of a novel solar driven atmospheric water generator. Energy Convers Manag. 2018;161:104–11.

    Article  Google Scholar 

  28. WATAIR: Turning Air Into Water. 2007. https://inhabitat.com/watair-turning-air-into-water/. Accessed 3 Aug 2019

  29. Harriman LG. The dehumidification handbook. Amesbury: Munters Cargocaire; 1990.

    Google Scholar 

  30. Nazari S, Safarzadeh H, Bahiraei M. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. J Clean Prod. 2019;208:1041–52.

    Article  CAS  Google Scholar 

  31. Nazari S, Safarzadeh H, Bahiraei M. Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renew Energy. 2019;135:729–44.

    Article  CAS  Google Scholar 

  32. Gill J, Singh J, Ohunakin OS, Adelekan DS. Exergy analysis of vapor compression refrigeration system using R450A as a replacement of R134a. J Therm Anal Calorim. 2019;136:857–72. https://doi.org/10.1007/s10973-018-7675-z.

    Article  CAS  Google Scholar 

  33. Singh G, Singh PJ, Tyagi VV, Pandey AK. Thermal and exergoeconomic analysis of a dairy food processing plant. J Therm Anal Calorim. 2019;136:1365–82. https://doi.org/10.1007/s10973-018-7781-y.

    Article  CAS  Google Scholar 

  34. Abraham JDAP, Mohanraj M. Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a. J Therm Anal Calorim. 2019;136:2071–86. https://doi.org/10.1007/s10973-018-7843-1.

    Article  CAS  Google Scholar 

  35. Çengel YA. Thermodynamics: an engineering approach. New York: McGraw-Hill; 2004.

    Google Scholar 

  36. Nasr M, Akhavan-Behabadi MA, Momenifar MR, Hanafizadeh P. Heat transfer characteristic of R-600a during flow boiling inside horizontal plain tube. Int Commun Heat Mass Transf. 2015;66:93–9.

    Article  CAS  Google Scholar 

  37. Momenifar MR, Akhavan-Behabadi MA, Nasr M, Hanafizadeh P. Effect of lubricating oil on flow boiling characteristics of R-600a/oil inside a horizontal smooth tube. Appl Therm Eng. Elsevier. 2015;91:62–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Saffarian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, R., Saffarian, M.R. & Behbahani-Nejad, M. Experimental study of an air humidity absorption cycle based on the MHI. J Therm Anal Calorim 139, 3613–3621 (2020). https://doi.org/10.1007/s10973-019-08736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08736-1

Keywords

Navigation