Skip to main content
Log in

Exergy analysis of vapor compression refrigeration system using R450A as a replacement of R134a

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper experimentally investigated exergetic performance analysis of vapor compression refrigeration system using R450a as a replacement for R134a at different evaporator and condenser temperatures within controlled environmental conditions. The exergetic performance analysis of the vapor compression refrigeration system with test parameters including efficiency defects in the components, total irreversibility, and exergy efficiency of the refrigeration system was performed. Findings showed that the total irreversibility and exergy efficiency of the vapor compression refrigeration system using R450A refrigerant were lower and higher than R134a by about 15.25–27.32% and 10.07–130.93%, respectively. However, the efficiency defect in the condenser, compressor, and evaporator of the R450A refrigeration system was lower than R134a by about 16.99–26.08%, 5.03–20.11%, and 1.85–15.85%, respectively. Conversely, efficiency defect in the capillary tube of the R450A refrigeration system was higher than R134a by about 14.66–78.97% under similar operating conditions. Overall, it was found that the most efficient component was the evaporator, and the least efficient component was the compressor for both refrigerants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

e :

Specific exergy (kJ kg−1)

S :

Entropy (kJ kg−1 K−1)

T :

Temperature (K)

I :

Irreversibility (kW)

GWP:

Global warming potential

P :

Pressure (Bar)

h :

Enthalpy (kJ kg−1)

W :

Compressor power (kW)

Q :

Refrigeration capacity (kW)

POE:

Polyolester oil

INR:

Indian rupee

ξ :

Mass flow rate (kg s−1)

µ :

Dynamic viscosity (Pa-s)

ρ :

Density (kg m−3)

η ex :

Second-law efficiency (%)

δ :

Efficiency defect (%)

evap:

Evaporator

Cap:

Capillary

Comp:

Compressor

Cond:

Condenser

in:

Inlet

Out:

Outlet

b:

Boundary

o:

Dead state

f:

Fluid

total:

Total

References

  1. Buzelin LOS, Amico SC, Vargas JVC, Parise JAR. Experimental development of an intelligent refrigeration system. Int J Refrig. 2005;28:165–75.

    Article  Google Scholar 

  2. Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview. Renew Sustain Energy Rev. 2017;73:1247–64.

    Article  CAS  Google Scholar 

  3. Harby K, Gebaly DR, Koura NS, Hassan M. Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew Sustain Energy Rev. 2016;58:347–60.

    Article  Google Scholar 

  4. Gill J, Singh J. Energetic and exergetic performance analysis of the vapor compression refrigeration system using adaptive neuro-fuzzy inference system approach. Exp Thermal Fluid Sci. 2017;88:246–60.

    Article  Google Scholar 

  5. Hepbasli A. Thermoeconomic analysis of household refrigerators. Int J Energy Res. 2007;31:947–59.

    Article  Google Scholar 

  6. Kabul A, Kizilkan O, Yakut AK. Performance and energetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). Int J Energy Res. 2008;32:824–36.

    Article  CAS  Google Scholar 

  7. Ahamed JU, Saidur R, Masjuki HH. Thermodynamic performance analysis of R-600 and R-600a as a refrigerant. En. E-Trans. 2010;5:11–8.

    Google Scholar 

  8. Bolaji BO. Experimental study of R152a and R32 to replace R134a in a domestic refrigerator. Energy. 2010;35:3793–8.

    Article  CAS  Google Scholar 

  9. Ozgur AE, Kabul A, Kizilkan O. Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a. Int J Low-Carbon Technol. 2014;9:56–62.

    Article  CAS  Google Scholar 

  10. Saravanakumar R, Selladurai V. Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. J Therm Anal Calorim. 2014;115(1):933–40.

    Article  CAS  Google Scholar 

  11. El-Morsi Mohamed. Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators. Energy. 2015;86:344–53.

    Article  CAS  Google Scholar 

  12. Golzari S, Kasaeian A, Daviran S, Mahian O, Wongwises S, Sahin AZ. Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant. Int J Refrig. 2017;73:134–43.

    Article  CAS  Google Scholar 

  13. Dowlati M, Aghbashlo M, Soufiyan MM. Exergetic performance analysis of an ice-cream manufacturing plant: a comprehensive survey. Energy. 2017;123(2017):445–59.

    Article  Google Scholar 

  14. Raveendran PS, Sekhar SJ. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as a condenser. J Therm Anal Calorim. 2017;127:1–8.

    Article  CAS  Google Scholar 

  15. Yataganbaba A, Kilicarslan A, Kurtbas I. Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration systems. Int J Refrig. 2015;60:26–37.

    Article  CAS  Google Scholar 

  16. Cho H, Park C. Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds. Appl Therm Eng. 2016;101:30–7.

    Article  CAS  Google Scholar 

  17. Minor BH, Herrmann D, Gravell R. Flammability characteristics of HFO-1234yf. AIChE Process Saf Prog. 2010;29:150–4.

    Article  CAS  Google Scholar 

  18. Qi Z. Performance improvement potentials of R1234yf mobile air conditioning system. Int J Refrig. 2015;58:35–40.

    Article  CAS  Google Scholar 

  19. Ortega Sotomayor P, Reis Parise JA. Characterization and simulation of an open piston compressor for application on automotive air-conditioning systems operating with R134a, R1234yf and R290. Int J Refrig. 2016;61:100–16.

    Article  CAS  Google Scholar 

  20. Raabe G. Molecular simulation studies in hydrofluoroolefine (HFO) working fluids and their blends. Sci Technol Built Environ. 2016;22:1–13.

    Article  Google Scholar 

  21. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants—a review. Int J Greenhouse Gas Control. 2009;3(1):108–19.

    Article  CAS  Google Scholar 

  22. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res. 2011;35(8):647–69.

    Article  CAS  Google Scholar 

  23. Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B. Experimental study of an R1234ze(E)/R134a mixture (R450A) as R134a replacement. Int J Refrig. 2015;51:52–8.

    Article  CAS  Google Scholar 

  24. Kontomaris K, Kulankara S, Kauffman JP. A reduced global warming potential replacement for HFC-134a in centrifugal chillers: XP10 measured performance and projected climate impact. HVAC&R Res. 2013;19(2013):857–64.

    Article  CAS  Google Scholar 

  25. Mota-Babiloni A, Makhnatch P, Khodabandeh R, Navarro-Esbrí J. Experimental assessment of R134a and its lower GWP alternative R513A. Int J Refrig. 2017;74:682–8.

    Article  CAS  Google Scholar 

  26. Makhnatch Pavel, Mota-Babiloni Adrián, Khodabandeh Rahmatollah. Experimental study of R450A drop-in performance in an R134a small capacity refrigeration unit. Int J Refrig. 2017;84:26–35.

    Article  CAS  Google Scholar 

  27. Adelekan DS, Ohunakin OS, Babarinde TO, Odunfa MK, Leramo RO, Oyedepo SO, Badejo DC. Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Stud Therm Eng. 2017;9:55–61.

    Article  Google Scholar 

  28. Gill J, Singh J. Performance analysis of vapor compression refrigeration system using an adaptive neuro-fuzzy inference system. Int J Refrig. 2017;82:436–46.

    Article  CAS  Google Scholar 

  29. Gill J, Singh J. Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant. Int J Refrig. 2017;84:287–99.

    Article  CAS  Google Scholar 

  30. Gill J, Singh J. An applicability of ANFIS approach for depicting energetic performance of VCRS using mixture of R134a and LPG as refrigerant. Int J Refrig. 2018;85:353–75.

    Article  CAS  Google Scholar 

  31. ISO, International Standard Organization, International Standard-8187, Household refrigerating appliances (refrigerators/freezers) characteristics and test methods, International Organization for Standardization, Switzerland, 1991.

  32. Gill J, Singh J. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant. Heat Mass Transf. 2017. https://doi.org/10.1007/s00231-017-2242-x.

    Article  Google Scholar 

  33. Padmanabhan VMV, Palanisamy S. The use of TiO2 nanoparticles to reduce refrigerator IR-reversibility. Energy Convers Manag. 2012;59:122–32.

    Article  CAS  Google Scholar 

  34. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  35. Padmanabhan VMV, Palanisamy SK. Exergy analysis of hydrocarbons mixture refrigerants R436A and R436B as a drop in replacement for R134a with TiO2 nanoparticles. Int J Exergy. 2013;12(3):405–22.

    Article  CAS  Google Scholar 

  36. Gill J, Singh J. Energetic and exergetic performance analysis of the vapor compression refrigeration system using adaptive neuro-fuzzy inference system approach. Exp Thermal Fluid Sci. 2017;88:246–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Gill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, J., Singh, J., Ohunakin, O.S. et al. Exergy analysis of vapor compression refrigeration system using R450A as a replacement of R134a. J Therm Anal Calorim 136, 857–872 (2019). https://doi.org/10.1007/s10973-018-7675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7675-z

Keywords

Navigation