Skip to main content
Log in

Preparation of LaNiO3 perovskite by oxalate and carbonate precursor method for utilization as catalyst for high-temperature decomposition of N2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mixed oxide LaNiO3 with perovskite structure was prepared by two relatively new and unconventional methods including preparation and thermal decomposition of mixed metal oxalate or carbonate precursors. The intermediates were prepared by reaction in a highly concentrated suspension (paste). The thermal decomposition conditions of these intermediates were described, and the final calcination temperatures were determined, which were done using thermal analysis methods and X-ray diffraction. During the decomposition of mixed carbonates, one-phase LaNiO3 is produced directly, and in case of decomposition of oxalates, a mixture of LaNiO3 and La2O3 is produced due to the formation of La2O2CO3 during the heating. Catalytic decomposition of nitrous oxide at high temperature (650–930 °C) and high loading (GHSV = 350,000 h−1) has shown high LaNiO3 activity, even at lower temperatures. The results were compared with the same compound obtained by co-precipitation and by solid-state reaction. Methods of preparation based on decomposition of oxalate and carbonate intermediates lead to the preparation of materials with appropriate composition, morphology, specific surface and high catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pena MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev. 2001;101:1981–2017.

    Article  CAS  Google Scholar 

  2. Ivanova S, Senyshyn A, Zhecheva E, Tenchev K, Nikolov V, Stoyanova R, Fuess H. Effect on the synthesis route on the microstructure and the reducibility of LaCoO3. J Alloys Compd. 2009;480:279–85.

    Article  CAS  Google Scholar 

  3. Dohnalová Ž, Šulcová P, Bělina P, Vlček M, Gorodylova N. Brown pigments based on perovskite structure of BiFeO3−δ. J Therm Anal Calorim. 2018;133:421–8.

    Article  Google Scholar 

  4. Magnone E, Kim JR, Park JH. Effect of synthesis method on oxygen adsorption/desorption properties of La–Sr–Co–Fe–O perovskite-type oxide. J Therm Anal Calorim. 2014;117:1221–9.

    Article  CAS  Google Scholar 

  5. Oliveira AAS, Medeiros RLBA, Figueredo GP, Macedo HP, Braga RM, Maziviero FV, Melo MAF, Melo DMA, Vieira MM. One-step synthesis of LaNiO3 with chitosan for dry reforming of methane. Int J Hydrogen Energy. 2018;43:9696–704.

    Article  CAS  Google Scholar 

  6. Palas B, Ersöz G, Atalay S. Catalytic wet air oxidation of Reactive Black 5 in the presence of LaNiO3 perovskite catalyst as a green process for azo dye removal. Chemosphere. 2018;209:823–30.

    Article  CAS  Google Scholar 

  7. de Lima SM, Mansur AJ. Synthesis and characterization of LaNiO3, LaNi(1−x)FexO3 and LaNi(1−x)CoxO3 perovskite oxides for catalysis application. Mater Res. 2002;5:329–35.

    Article  Google Scholar 

  8. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ASC Catal. 2014;4:2917–40.

    CAS  Google Scholar 

  9. Konsolakis M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects. ASC Catal. 2015;5:6397–421.

    CAS  Google Scholar 

  10. Chawla SK, George M, Patel F, Patel S. Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts. Proc Eng. 2013;51:461–6.

    Article  Google Scholar 

  11. Pérez-Ramírez J. Prospects of N2O emission regulations in the European fertilizer industry. App Catal B Environ. 2006;70:31–5.

    Article  Google Scholar 

  12. Galle M, Agar DW, Watzenberger O. Thermal N2O decomposition in regenerative heat exchanger reactors. Chem Eng Sci. 2001;56:1587–95.

    Article  CAS  Google Scholar 

  13. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA. Heterogeneous catalytic decomposition of nitrous oxide. App Catal B Environ. 1996;9:25–64.

    Article  CAS  Google Scholar 

  14. Frutos OD, Quijano G, Aizpuru A, Munoz R. A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources. Biotechnol Adv. 2018;36:1025–37.

    Article  CAS  Google Scholar 

  15. Ivanov DV, Pinaeva LG, Isupova LA, Nadeev AN, Prosvirin IP, Dovlitova LS. Insights into the reactivity of La1−xSrxMnO3 (x = 0 ÷ 0.7) in high temperature N2O decomposition. Catal Lett. 2011;141:322–31.

    Article  CAS  Google Scholar 

  16. Li C, Shen Y, Zhu S. Supported Ni–La–Ox for catalytic decomposition of N2O I: component optimization and synergy. RSC Adv. 2014;4:29107–19.

    Article  CAS  Google Scholar 

  17. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA. Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition. J Catal. 2009;267:5–13.

    Article  CAS  Google Scholar 

  18. Wu Y, Dujardin C, Granger P, Tiseanu C, Sandu S, Kuncser V, Parvulescu VI. Spectroscopic investigation of iron substitution in EuCoO3: related impact on the catalytic properties in the high-temperature N2O decomposition. J Phys Chem C. 2013;117:13989–99.

    Article  CAS  Google Scholar 

  19. Huang CD, Zhu YY, Wang XD, Liu X, Wang JH, Zhang T. Sn promoted BaFeO3−delta catalysts for N2O decomposition: optimization of CrossMark Fe active centers. J Catal. 2017;347:9–20.

    Article  CAS  Google Scholar 

  20. Bosacka M, Filipek E, Paczesna A. Unknown phase equilibria in the ternary oxide V2O5–CuO–In2O3 systém in subsolidus area. J Therm Anal Calorim. 2016;125:1161–70.

    Article  CAS  Google Scholar 

  21. Santana Lima R, dos Santos AV, Vargas Pereira F, Oliviera da Guarda Souza M. Decomposition study of Ni–La–Mg–O precursors using thermal analysis. J Therm Anal Calorim. 2010;100:83–7.

    Article  CAS  Google Scholar 

  22. Zhou K, Wu W, Li Y, Wu X, Liao S. Preparation of magnetic nanocrystalline Mn0.5Mg0.5Fe2O4 and kinetics of thermal decomposition of precursors. J Therm Anal Calorim. 2013;114:205–12.

    Article  CAS  Google Scholar 

  23. Bělina P, Machalíková V, Gorodylova N, Šulcová P. A comparative study of the influence of the method of synthesis of intermediate products in the preparation of CoNd2W2O10 and MnNd2W2O10 and their color properties in ceramic glazes. Chem Pap. 2017;71:1597–603.

    Article  Google Scholar 

  24. Sádovská G, Tabor E, Bernauer M, Sazama P, Fíla V, Kmječ T, Kohout J, Závěta K, Tokarová V, Sobalík Z. FeOx/Al2O3 catalyst for high temperature decomposition of N2O under conditions of NH3 oxidation in nitric acid production. Catal Sci Technol. 2018;8:2841–52.

    Article  Google Scholar 

  25. Cristiani C, Dotelli G, Mariani M, Pelosato R, Zampori L. Synthesis of nanostructures perovskite powders via simple carbonate co-precipitation. Chem Pap. 2013;67:526–31.

    Article  CAS  Google Scholar 

  26. Shaheen WM. Thermal behaviour of pure and binary basic nickel carbonate and ammonium molybdate systems. Mater Lett. 2002;52:272–82.

    Article  CAS  Google Scholar 

  27. Shirsat AN, Ali M, Kaimal KNG, Bharadwaj SR, Das D. Thermochemistry of La2O2CO3 decomposition. Themochim Acta. 2003;399:167–70.

    Article  CAS  Google Scholar 

  28. Zhan G, Yu J, Xu Z, Zhou F, Chi R. Kinetics of thermal decomposition of lanthanum oxalate hydrate. Trans Nonferrous Met Soc China. 2012;22:925–34.

    Article  CAS  Google Scholar 

  29. Takahashi J, Toyoda T, Ito T, Takatsu M. Preparation of LaNiO3 powder from coprecipitated lanthanum–nickel oxalates. J Mater Sci. 1990;25:1557–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance provided by the Research Infrastructures NanoEnviCz (Project No. LM2015073) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the project Pro-NanoEnviCz (Reg. No. CZ.02.1.01/0.0/0.0/16_013/0001821) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union—European Structural and Investments Funds in the frame of Operational Programme Research Development and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Bělina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bělina, P., Sádovská, G., Krejčíková, V. et al. Preparation of LaNiO3 perovskite by oxalate and carbonate precursor method for utilization as catalyst for high-temperature decomposition of N2O. J Therm Anal Calorim 138, 4197–4202 (2019). https://doi.org/10.1007/s10973-019-08596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08596-9

Keywords

Navigation